Skip to main content
Log in

The mechanism of deuterium oxide-induced protein degradation in Lemna minor

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Transfer of Lemna minor fronds to culture medium containing 50% (v/v) deuterium oxide induces a large increase in the rate of protein breakdown, which is not due to an increase in the activity of acidic or neutral proteolytic enzymes or peptidases. Biochemical and ultrastructural evidence indicates that deuterium oxide affects the properties of certain membranes, particularly the tonoplast, and allows vacuolar proteolytic enzymes to pass into the cytoplasm and cause the increased protein breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAPA:

benzylarginine-p-nitroanilide

LPA:

leucine-p-nitroanilide

TCA:

trichloroacetic acid

References

  • Amenta, J.S., Sargus, M.J., Baccino, F.M.: Effect of microtubular or translational inhibitors on general cell protein degradation. Biochem. J. 168, 223–227 (1977)

    PubMed  Google Scholar 

  • Ashford, T.P., Porter, K.P.: Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 12, 198–202 (1962)

    Article  PubMed  Google Scholar 

  • Beevers, L.: Protein degradation and proteolytic activity in the cotyledons of germinating pea seeds (Pisum sativum). Phytochemistry 7, 1837–1844 (1968)

    Article  Google Scholar 

  • Boller, T., Kende, H.: Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 63, 1123–1132 (1979)

    Google Scholar 

  • Cooke, R.J., Grego, S., Oliver, J., Davies, D.D.: The effect of deuterium oxide on protein turnover in Lemna minor. Planta 146, 229–236 (1979)

    Google Scholar 

  • Davies, D.D., Humphrey, T.J.: Protein turnover in plants. In: Perspectives in Experimental Biology, vol. 2, pp. 313–324, Sunderland, N. ed. New York: Pergamon Press 1976

    Google Scholar 

  • Deter, R.L., de Duve, C.: Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell Biol. 33, 437–449 (1967)

    PubMed  Google Scholar 

  • Franke, W.W., Krien, S., Brown, R.M.: Simultaneous gluteraldehyde osmium tetroxide fixation with post-osmotication. Histochemie 19, 162–164 (1969)

    PubMed  Google Scholar 

  • Hilton, M.A., Barnes, F.W., Henry, S.S., Enns, T.: Mechanisms in enzymatic transamination. Rate of exchange of the hydrogen of aspartate. J. Biol. Chem. 209, 743–754 (1954)

    PubMed  Google Scholar 

  • Humphrey, T.J., Davies, D.D.: A new method for the measurement of protein turnover. Biochem. J. 148, 119–127 (1975)

    PubMed  Google Scholar 

  • Humphrey, T.J., Davies, D.D.: A sensitive method for measuring protein turnover based on the measurement of 2-3H labelled amino acids in protein. Biochem. J. 156, 561–568 (1976)

    PubMed  Google Scholar 

  • Johnson, C.B.: The use of density labelling techniques in investigations into the control of enzyme levels. Phytochem. Soc. Symp. 14, 225–243 (1977)

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  • Matile, P.: Biochemistry and function of vacuoles. Annu. Rev. Plant Physiol. 29, 193–213 (1978)

    Article  Google Scholar 

  • Matile, P., Moor, H.: Vacuolation: origin and development of the lysosomal apparatus in root-tip cells. Planta 80, 159–175 (1968)

    Google Scholar 

  • Mitchener, J.S., Shelburne, J.D., Bradford, W.D., Hawkins, H.K.: Cellular autophagocytosis induced by deprivation of serum and amino acids in Hela cells. Am. J. Pathol. 83, 485–498 (1976)

    PubMed  Google Scholar 

  • Mortimore, G.E., Neely, A.N., Cox, J.R., Guinivan, R.A.: Proteolysis in homogenates of perfused rat liver: responses to insulin, glucagon and amino acids. Biochem. Biophys. Res. Commun. 54, 89–95 (1973)

    PubMed  Google Scholar 

  • Neely, A.N., Nelson, P.B., Mortimore, G.E.: Osmotic alterations of the lysosomal system during rat liver perfusion: reversible suppression by insulin and amino acids. Biochim. Biophys. Acta 338, 458–472 (1974)

    Google Scholar 

  • Nishimura, M., Beevers, H.: Hydrolases in vacuoles from castor bean endosperm. Plant Physiol. 62, 44–48 (1978)

    Google Scholar 

  • Nishimura, M., Beevers, H.: Hydrolysis of protein in vacuoles isolated from higher plant tissue. Nature (London) 277, 412–413 (1979)

    Google Scholar 

  • Segal, H.L.: Mechanism and regulation of protein turnover in animal cells. In: Current Topics in Cellular Regulation, vol. 11, pp. 183–201. Horecker, B.L., Stadtman, E.R. eds. New York, San Francisco, London: Academic Press 1976

    Google Scholar 

  • Trewavas, A.: The turnover of nucleic acids in Lemna minor. Plant Physiol. 45, 742–751 (1970)

    Google Scholar 

  • van der Wilden, W., Matile, P.: Isolation and characterisation of yeast tonoplast fragments. Biochem. Physiol. Pflanz. 173, 285–294 (1978)

    Google Scholar 

  • Waber, J., Sakai, W.S.: Further studies of the ultrastructure of D2O-grown winter rye. Protoplasma 84, 273–281 (1975)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, R.J., Grego, S., Roberts, K. et al. The mechanism of deuterium oxide-induced protein degradation in Lemna minor . Planta 148, 374–380 (1980). https://doi.org/10.1007/BF00388126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388126

Key words

Navigation