Skip to main content
Log in

Structural differentiation of membranes involved in the secretion of polysaccharide slime by root cap cells of cress (Lepidium sativum L.)

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PF:

protoplasmic fracture face

EF:

exoplasmic fracture face

IMP:

intramembranous particle

References

  • Branton, D., Bullivant, S., Gilula, N.B., Karnovsky, M.J., Moor, H., Mühlethaler, K., Northcote, d.H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin, L.A., Steere, R.L., Weinstein, R.S. (1975) Freeze-etching nomenclature. Science 190, 54–56

    PubMed  Google Scholar 

  • Branton, D., Deamer, D.W. (1972) Membrane structure. In: Protoplasmatologia, vol. II/E/1, Alfert, M., Bauer, H., Sandritter, W., Sitte, P., eds. Springer, Wien New York

    Google Scholar 

  • Branton, D., Moor, H. (1964) Fine structure in freeze-etched Allium cepa L. root tips. J. Ultrastruct. Res. 11, 401–411

    Google Scholar 

  • Camilli de, P., Peluchetti, D., Meldolesi, J. (1976) Dynamic changes of the luminal plasmalemma in stimulated parotic acinar cells. A freeze-fracture study. J. Cell Biol. 70, 59–74

    PubMed  Google Scholar 

  • Chailley, B. (1979) Etude par cryofracture des membranes impliquées dans la sécrétion. Biol. Cellulaire 35, 55–70

    Google Scholar 

  • Chandler, D.E., Heuser, J. (1979) Membrane fusion during secretion. Cortical granule exocytosis in sea urchin eggs as studied by quick-freezing and freeze-fracture. J. Cell Biol. 83, 91–108

    PubMed  Google Scholar 

  • Chandler, D.E., Heuser, J.E. (1980) Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol. 86, 666–674

    PubMed  Google Scholar 

  • Chi, E.Y., Lagunoff, D., Koehler, J.K. (1976) Freeze-fracture study for mast cell secretion. Proc Natl. Acad. Sci. USA 73, 2823–2827

    PubMed  Google Scholar 

  • Giddings, T.H. Jr., Brower, D.L., Staehelin, L.A. (1980) Visualization of particle complexes in the plasma membrane of Micraterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J. Cell Biol. 84, 327–339

    PubMed  Google Scholar 

  • Gros, D., Potreau, D., Mocquard, J.-P. (1980) The myocardial plasma membrane during development: Influence of glutaraldehyde fixation on the density and size of intramembranous particles. J. Cell Sci. 43, 301–317

    PubMed  Google Scholar 

  • Grove, S.N., Bracker, C.E., Morré, D.J. (1968) Cytomembrane differentiation in the endoplasmic reticulum-Golgi apparatusvesicle complex. Science 161, 171–173

    PubMed  Google Scholar 

  • Hasty, D.L., Hay, E.D. (1978) Freeze-fracture studies of the developing cell surface. II. Particle-free membrane blisters on glutaraldehyde-fixed corneal fibroblasts are artefacts. J. Cell Biol. 78, 756–768

    PubMed  Google Scholar 

  • Hemmes, D.E., Pinto da Silva, P. (1980) Localization of secretion-related, calcium-binding substrates in encysting zoospores of Phytophthora palmivora. Biol. Cellulaire 37, 235–240

    Google Scholar 

  • Keenan, T.W., Morré, D.J. (1970) Phospholipid class and fatty acid composition of Golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry 9, 19–25

    PubMed  Google Scholar 

  • Kiermayer, O. (1970) Elektronenmikroskopische Untersuchungen zum Problem der Cytomorphogenese von Micrasterias denticulata Bréb. I. Allgemeiner Überblick. Protoplasma 69, 97–132

    Google Scholar 

  • Kiermayer, O., Dobberstein, B. (1973) Membrankomplexe dictyosomaler Herkunft als “Matrizen” für die extraplasmatische Synthese und Orientierung von Mikrofibrillen. Protoplasma 77, 437–451

    Google Scholar 

  • Kiermayer, O., Sleytr, U.B. (1979) Hexagonally ordered “rosettes” of particles in the plasma membrane of Micrasterias denticulata Bréb. and their significance for microfibril formation and orientation. Protoplasma 101, 133–138

    Google Scholar 

  • Kiermayer, O., Staehelin, L.A. (1972) Feinstruktur von Zellwand und Plasmamembran bei Micrasterias denticulata Bréb. nach Gefrierätzung. Protoplasma 74, 227–237

    Google Scholar 

  • Lawson, D., Raff, M.C., Gomperts, B., Fewtrell, C., Gilula, N.B. (1977) Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J. Cell Biol. 72, 242–259

    PubMed  Google Scholar 

  • Lüttge, U., Schnepf, E. (1976) Organic substances. In: Encyclopedia of plant physiology, vol. 2, pt. B, pp. 244–277, Lüttge, U., Pitman, M.G., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mollenhauer, H.H., Hass, B.S., Morré, D.J. (1976) Membrane transformations in Golgi apparatus of rat spermatids. A role for thick cisternae and two classes of coated vesicles in acrosome formation. J. Microsc. Biol. Cell 27, 33–36

    Google Scholar 

  • Mollenhauer, H.H., Morré, D.J. (1966) Golgi apparatus and plant secretion. Annu. Rev. Plant Physiol. 17, 27–46

    Google Scholar 

  • Mollenhauer, H.H., Whaley, W.G., Leech, J.H. (1961) A function of the Golgi apparatus in outer rootcap cells. J. Ultrastruct. Res. 5, 193–200

    PubMed  Google Scholar 

  • Moor, H., Mühlethaler, K. (1963) Fine structure in frozen-etched yeast cells. J. Cell Biol. 17, 609–628

    Article  Google Scholar 

  • Morré, D.J., Jones, D.D., Mollenhauer, H.H. (1967) Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays. I. Kinetics and secretory pathway. Planta 74, 286–301

    Google Scholar 

  • Morré, D.J., Mollenhauer, H.H., Bracker, C.E. (1971) Origin and continuity of Golgi apparatus. In: Results and problems in cell differentiation, vol. 2, pp. 82–126, Reinert, J., Ursprung, H., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Morré, D.J., Ovtracht, L. (1977) Dynamics of the Golgi apparatus: Membrane differentiation and membrane flow. Int. Rev. Cytol. Suppl. 5, 61–188

    PubMed  Google Scholar 

  • Northcote, D.H., Lewis, D.R. (1968) Freeze-etched surfaces of membranes and organelles in the cells of pea root tips. J. Cell Sci. 3, 199–206

    PubMed  Google Scholar 

  • Northcote, D.H., Pickett-Heaps, J.D. (1966) A function of the Golgi apparatus in polysaccharide synthesis and transport in root-cap cells of wheat. Biochem. J. 98, 159–167

    PubMed  Google Scholar 

  • Orci, L., Perrelet, A., Friend, S. (1977) Freeze-fracture of membrane fusions during exocytosis in pancreatic B-cells. J. Cell Biol. 75, 23–30

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffer, B.E., Vail, W.J. (1974) Membrane fusion and molecular segregation in phospholipid vesicles. Biochim. Biophys. Acta 352, 10–28

    PubMed  Google Scholar 

  • Peng, H.B., Jaffe, L.F. (1976) Cell-wall formation in Pelvetia embryos. A freeze-fracture study. Planta 133, 57–71

    Google Scholar 

  • Pinto da Silva, P., Nougeira, M.L. (1977) Membrane fusion during secretion. A hypothesis based on electron microscope observation of Phytophthora palmivora zoospores during encystment. J. Cell Biol. 73, 161–181

    PubMed  Google Scholar 

  • Robinson, D.G., Preston, R.D. (1971) Fine structure of swarmers of Cladophora and Chaetomorpha. I. The plasmalemma and Golgi apparatus in naked swarmers. J. Cell Sci. 9, 581–601

    PubMed  Google Scholar 

  • Schnepf, E. (1969) Sekretion und Exkretion bei Pflanzen. In: Protoplasmatologia, vol. VIII/8, Alfert, M., Bauer, H., Harding, C.V., Sandritter, W., Sitte, P., eds. Springer, Wien New York

    Google Scholar 

  • Severs, N.J., Hicks, R.M. (1979) Analysis of membrane structure in the transitional epithelium of rat urinary bladder. 2. The discoidal vesicles and Golgi apparatus: Their role in luminal membrane biogenesis. J. Ultrastruct. Res. 69, 279–296

    PubMed  Google Scholar 

  • Sievers, A. (1967) Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. II. Die polare Organisation des normal wachsenden Rhizoids von Chara foetida. Protoplasma 64, 255–253

    Google Scholar 

  • Sievers, A. (1973) Golgi-Apparat. In: Grundlagen der Cytologie, pp. 281–296, Hirsch, G.C., Ruska, H., Sitte, P., eds. Gustav Fischer, Stuttgart

    Google Scholar 

  • Staehelin, L.A., Kiermayer, O. (1970) Membrane differentiation in the Golgi complex of Micrasterias denticulata Bréb. visualized by freeze-etching. J. Cell Sci. 7, 787–792

    PubMed  Google Scholar 

  • Vian, B. (1974) Précisions fournies par le cryodécapage sur la restructuration et l'assimilation au plasmalemme des membranes des dérivés golgiens. C.R. Acad. Sci., D, 278, 1483–1486

    Google Scholar 

  • Whaley, W.G. (1966) Proposals concerning replication of the Golgi apparatus. In: Funktionelle und morphologische Organisation der Zelle. 3. wiss. Konf. Ges. Dtsch. Naturf. u. Ärzte: Probleme der biologischen Reduplikation, pp. 340–371, Sitte, P., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Whaley, W.G., Dauwalder, M. (1979) The Golgi apparatus, the plasma membrane, and functional integration. Int. Rev. Cytol. 58, 199–245

    PubMed  Google Scholar 

  • Yunghans, W., Keenan, T.W., Morré, D.J. (1970) Isolation of a Golgi apparatus-rich cell fraction from rat liver. III. Lipid and protein composition. Exp. Mol. Pathol. 12, 36–45

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkmann, D. Structural differentiation of membranes involved in the secretion of polysaccharide slime by root cap cells of cress (Lepidium sativum L.). Planta 151, 180–188 (1981). https://doi.org/10.1007/BF00387821

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387821

Key words

Navigation