Skip to main content
Log in

Tetralin and oxygen transfer in the liquid-impelled loop reactor

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

During the bioconversion of tetralin in the liquid-impelled loop reactor, oxygen and tetralin are transferred from the organic-solvent phase to the aqueous phase. Mass transfer of either tetralin or oxygen is likely to be the rate-limiting step in this bioconversion. In order to establish which of the two is limiting, the overall mass-transfer coefficients (K i,L A) of both substrates were determined. Theoretical calculations did not reveal large differences. Therefore both K i,L A's were experimentally determined as well. From the results it is concluded that neither tetralin nor oxygen can be assigned to be the mass-transfer-limiting factor if tetralin is completely converted into CO2 and H2O. On the other hand, if tetralin is oxidized only partly (the aim of our synthetic studies), it very likely is the limiting substrate and process control can thus be achieved by controlling the supply of this toxic compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ρ s kg/m3 :

solvent density

vs m/s:

slip velocity of the drops=vs s /a-vs L /(1-a)

vs s , vs L m/s:

superficial velocity of the organic-solvent phase and the aqueous phase, respectively, in the main tube of the LLR

a :

holdup of organic-solvent phase in the main tube of the LLR

d m:

drop diameter

n s Pa s:

dynamic viscosity of the organic-solvent phase

D L m2/s:

diffusion coefficient of solute in the aqueous phase

Re L :

Reynolds number of the aqueous phase around the drops ρ L vs dη L

ρ L kg/m3 :

density of the aqueous phase

η L Pa s:

dynamic viscosity of the aqueous phase

Sc L :

Schmidt number of the aqueous phase=η L -1 L D L

g m/s2 :

gravitational acceleration

F :

correction factor for the circulation within the droplets

σ N m:

interfacial tension

D s m2/s:

diffusion coefficient of solute in the organic-solvent phase

t s:

time of contact

B n :

coefficient

λ n :

nth eigen value

References

  1. Laane, C.; Tramper, J.; Lilly, M. D. (Eds.): Biocatalysis in organic media. Amsterdam: Elsevier, 1987

    Google Scholar 

  2. Tramper, J.; Vermuë, M. H.; Beeftink, H. H.; Von Stockar, U. (Eds.): Biocatalysis in non-conventional media. Amsterdam: Elsevier, 1992

    Google Scholar 

  3. Bruce, L. J.; Daugulis, A. J.: Solvent selection strategies for extractive biocatalysis. Biotechnol. Prog. 7 (1991) 116–124

    PubMed  Google Scholar 

  4. Vermuë, M. H.; Tramper, J.: Extractive biocatalysis in a liquid-impelled loop reactor. In: Christiansen, C., Munck, J., Villadsen, J. (Eds.): Proceedings of the 5th European congress on biotechnology, pp 243–246. Copenhagen: Munksgaard 1990

    Google Scholar 

  5. Tramper, J.; Wolters, I.; Verlaan, P.: The liquid-impelled loop reactor: a new type of density-difference-mixed bioreactor. In: Laane, C., Tramper, J., Lilly, M. D. (Eds.): Biocatalysis in organic media, pp 311–316. Amsterdam: Elsevier 1987

    Google Scholar 

  6. Van Sonsbeek, H. M.; Verdurmen, R. E. M.; Verlaan, P.; Tramper, J.: Hydrodynamic model for liquid-impelled loop reactors. Biotechnol. Bioeng. 36 (1990) 940–946

    Google Scholar 

  7. Van Sonsbeek, H. M.; Van Der Tuin, S. P.; Tramper, J.: Mixing in liquid-impelled loop reactors. Biotechnol. Bioeng. 39 (1992) 707–716

    Google Scholar 

  8. Van Sonsbeek, H. M.; De Blank, H.; Tramper, J.: Oxygen transfer in liquid-impelled loop reactors using perflurocarbon liquids. Biotechnol. Bioeng. 40 (1992) 713–718

    Google Scholar 

  9. Van Sonsbeek, H. M.; Gielen, S. J.; Tramper, J.: Steady-state method for KA measurements in model systems. Biotechnol. Techn. 5 (1991) 157–162

    Google Scholar 

  10. Van Sonsbeek, H. M.: Physical aspects of liquid-impelled loop reactors. PhD thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1992

    Google Scholar 

  11. Sikkema, J.; De Bont, J. A. M.: Isolation and initial characterization of bacteria growing on tetralin. Biodegradation 2 (1991) 15–23

    Google Scholar 

  12. Sikkema, J.: Microbial transformation of tetralin, PhD thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1993

    Google Scholar 

  13. Van't Riet, K.; Tramper, J.: Basic bioreactor design. New York: Marcel Dekker 1991

    Google Scholar 

  14. Al-Aswad, K. K.; Mumford, C. J.; Jeffreys, G. V.: The application of drop-size distribution and discrete drop mass-transfer models to assess the performance of a rotating disc contractor. AIChE Journal 31 (1985) 1488–1497

    Article  Google Scholar 

  15. Hughmark, G. A.: Liquid-liquid spray column drop size, holdup, and continuous phase mass transfer. Ind. & Eng. Fundamentals 6 (1967) 408–413

    Google Scholar 

  16. Kronig, R.; Brink, J. C.: On the theory of extraction from falling droplets. Appl. Res. A2 (1950) 142–154

    Google Scholar 

  17. Rose, P. M.; Kintner, R. C.: Mass transfer from large oscillating drops. AIChE Journal 12 (1966) 530–534

    Article  Google Scholar 

  18. Wilke, C. R.; Chang, P.: AIChE Journal 1 (1955) 264–270

    Article  Google Scholar 

  19. Handbook of Chemistry and Physics, 60th edition. Boca Raton, Florida, CRC press

  20. Ju, L. K.; Lee, J. F.; Armiger, W. B.: Effect of the interfacial surfactant layer on oxygen transfer through the oil/water phase boundary in perfluorocarbon emulsions. Biotechnol. Bioeng. 37 (1991) 505–511

    Google Scholar 

  21. Ju, L. K.; Ho, C. S.: Measuring oxygen diffusion coefficients with polarografic oxygen electrodes. I. Electrolytic solutions. Biotechnol. Bioeng. 27 (1985) 1495–1499

    Google Scholar 

  22. Perry, R. H.; Green, D. W.; Maloney, J. O. (Eds.): Perry' Chemical Engineers' Handbook, 6th edition. New York: McGraw-Hill 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank W.A. Beverloo for the helpful critical comments in the preparation of the manuscript. Part of this work was financially supported by the Dutch Committee of Industrial Biotechnology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermuë, M., Tacken, M. & Tramper, J. Tetralin and oxygen transfer in the liquid-impelled loop reactor. Bioprocess Engineering 11, 224–228 (1994). https://doi.org/10.1007/BF00387696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387696

Keywords

Navigation