Skip to main content
Log in

Dielectric measurement to monitor the growth and the physiological states of biological cells

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Measurement of capacitance, also referred to as dielectric permittivity, is a new method of estimating the concentration of cells, monitoring the growth and detecting the physiological changes during the cultivation of organisms in various bioprocess. Several types of biological cells were studied, namely; Saccharomyces cerevisiae, Escherichia coli, Perilla frutescens (plant cells) and AFP-27 hybridoma cells. Generally, a linear correlation between cell capacitance (C) and other biomass measurement technique such as optical density (OD) and dry weight (DW) was obtained using the different types of cell suspension. Therefore, this method could be used to monitor the growth of the organism during the active growth. It could be conveniently used to make a rapid estimate of the cell concentration such as in plant cell suspension culture. The capacitance sensor could also be designed to be installed and autoclaved in-situ in a bioreactor and used for on-line monitoring of cell growth. On the other hand, distinct deviations in the capacitance value were observed in relation with the growth stage of the organism. This was observed in all the organisms studied but the type of deviation depends on the physiology of the organism. This variation in cell capacitance showed the possibility of using this method as a means to indicate changes in the physiological state of cells during cultivation. This capability would be very useful in designing control strategies that would depend on the physiological states in the bioprocess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zabriskie, D. W.; Humphrey, A.: Estimation of fermentation biomass concentration by measuring culture fluorescence. Appl. Environ. Microbiol. 35 (1978) 337–343

    Google Scholar 

  2. Konstantinov, K. B.; Yoshida, T.: On-line monitoring of representative structural variables in fed-batch cultivation of recombinant Escherichia coli for phenylalanine production. J. Ferment. Bioeng. 70 (1990) 421–427

    Google Scholar 

  3. Harris, M.; Todd, R. W.; Bungard, S. J.; Lovitt, R. W.; Morris, J. G.; Kell, D. B.: Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass. Enz. Microb. Technol. 9 (1987) 181–186

    Article  Google Scholar 

  4. Mishima, K.; Mimura, A.; Takahara, Y.; Asami, K.; Hanai, T.: On-line monitoring of cell concentrations by dielectric measurements. J. Ferm. Bioengr. 72 (1991) 291–295

    Article  Google Scholar 

  5. Gbewonyo, K.; Jain, D.; Hunt, G.; Drew, S. W.; Buckland, B. C.: On-line analysis of avermectin fermentation cell growth kinetics in an industrial pilot plant. Biotechnol. Bioengr. 34 (1988) 234–241

    Google Scholar 

  6. Taya, M.; Hegglin, M.; Prenosil, J. E.; Bourne, J. R.: On-line monitoring of cell growth in plant tissue cultures by conductometry. Enz. Microb. Technol. 11 (1989) 170–176

    Article  Google Scholar 

  7. Ebina, Y.; Ekida, M.; Hashimoto, H.: Origin of changes in electrical impedance during the growth and fermentation process of yeast in batch culture. Biotechnol. Bioengr. 33 (1989) 1290–1295

    Google Scholar 

  8. Mishima, K.; Mimura, A.; Takahara, Y.: On-line monitoring of cell concentrations during yeast cultivation by dielectric measurements. J. Ferm. Bioengr. 72 (1991) 296–299

    Article  Google Scholar 

  9. Davey, C. L.; Penaloza, W.; Kell, D. B.; Hedger, J. N.: Real-time monitoring of the accretion of Rhizopus oligosporus biomass during the solid-substrate tempe fermentation. World J. Microbiol. Biotechnol. 7 (1991) 248–259

    Google Scholar 

  10. Davey, C. L.; Kell, D. B.; Kemp, R. B.; Meredith, R. W.: On the audio- and radio-frequency dielectric behavior of anchorage-independent, mouse L929-derived LS fibroblasts. Bioelectrochem. Bioenerg. 20 (1988) 83–98

    Article  Google Scholar 

  11. Morisaki, H.; Kasahara, Y. S.; Tanigawa, S.; Hattori, T.: The changes in the surface characteristics of Pseudomonas syringae induced by a plasmid. J. Gen. Appl. Microbiol. 38 (1992) 165–177

    Google Scholar 

  12. Konstantinov, K. B.; Nishio, N.; Seki, T.; Yoshida, T.: Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production. J. Ferm. Bioengr. 71 (1991) 350–355

    Article  Google Scholar 

  13. Zhong, J. J.; Seki, T.; Kinoshita, S.; Yoshida, T.: Rheological characteristics of cell suspension and cell culture of Perilla frutescens. Biotechnol. Bioengr. 40 (1992) 1256–1262

    Google Scholar 

  14. Asami, K.; Hanai, T.; Koizumi, N.: Dielectric properties of yeast cells. J. Membrane Biol. 28 (1976) 169–180

    Google Scholar 

  15. Owens, J. D.; Konirova, L.; Thomas, D. S.: Causes of conductance change in yeast cultures. J. Appl. Bacteriol. 72 (1992) 32–38

    PubMed  Google Scholar 

  16. Martegani, E.; Porro, D.; Ranzi, B. M.; Alberghina, L.: Involvement of cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast. Biotechnol. Bioengr. 36 (1990) 453–459

    Google Scholar 

  17. Alberghina, L.; Ranzi, B. M.; Porro, D.; Martegani, E.: Flow cytometry and cell cycle kinetics in continuous and fed-batch fermentations of budding yeast. Biotechnol. Prog. 7 (1991) 299–304

    PubMed  Google Scholar 

  18. Tyson, C. B.; Lord, P. G.; Wheals, A. E.: Dependency of cell size of Saccharomyces cerevisiae cells on growth rate. J. Bacteriol. 138 (1979) 92–98

    PubMed  Google Scholar 

  19. Su, W.; Humphrey, A. E.: Production of rosmarinic acid in high density perfusion cultures of Anchusa officinalis using a high sugar medium. Biotechnol. Lett. 12 (1990) 793–798

    Google Scholar 

  20. Martinez, B. C.; Park, C. H.: Characteristics of batch suspension cultures of preconditioned Coleus blumei cells: Sucrose effect. Biotechnol. Prog. 9 (1993) 97–100

    Google Scholar 

  21. Markx, G. H.; ten Hoopen, H. J. G.; Meijer, J. J.; Vinke, K. L.: Dielectric spectroscopy as a novel and convenient tool for the study of the shear sensitivity of plant cells in suspension culture. J. Biotechnol. 19 (1991) 145–158

    Article  PubMed  Google Scholar 

  22. Zaritsky, A.; Helmstetter, C. E.: Rate maintenance of cell division in Escherichia coli B/r: Analysis of simple nutritional shift-down. J. Bacteriol. 174 (1992) 8152–8155

    PubMed  Google Scholar 

  23. Sugimoto S.; Kato, N.; Seki, T.; Yoshida, T.; Taguchi, H.: Loss of cell viability by excessive synthesis of a specific RNA in phenylalanine production. J. Biotechnol. 5 (1987) 157–163

    Article  Google Scholar 

  24. Konstantinov, K. B.; Yoshida, T.: Physiological state control of fermentation processes. Biotechnol. Bioengr. 33 (1989) 1145–1156

    Google Scholar 

  25. Goebel, N. K.; Kuehn, R.; Flickinger, M. C.: Methods for determination of growth-rate-dependent changes in hybridoma volume, shape and surface structure during continuous recycle. Cytotechnology. 4 (1990) 45–57

    PubMed  Google Scholar 

  26. Frame, K. K.; Hu, W. S.: Cell volume measurement as an estimation of mammalian cell biomass. Biotechnol. Bioengr. 36 (1990) 191–197

    Google Scholar 

  27. Konstantinov, K. B.; Pambayun, R.; Matanguihan, R. M.; Yoshida, T.; Perusich, C. M.; Hu, W. S.: On-line monitoring of hybridoma cell growth using a laser turbidity sensor. Biotechnol. Bioengr. 40 (1992) 1337–1342

    Google Scholar 

  28. Jayaram, S.; Castle, G. S. P.; Margaritis, A.: Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses. Biotechnol. Bioengr. 40 (1992) 1412–1420

    Google Scholar 

  29. De Gier, J.: Permeability barriers formed by membrane lipids. Bioelectrochem. Bioenerg. 27 (1992) 1–10

    Article  Google Scholar 

  30. Davey, C. L.; Davey, H. M.; Kell, D. B.: On the dielectric properties of cell suspensions at high volume fractions. Bioelectrochem. Bioenerg. 28 (1992) 319–340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Present address: Miles Inc., Berkeley, CA 94701 U.S.A.

The authors sincerely appreciated the generosity of Dr. K. Mishima and Dr. A. Mimura of Kobe Steel Co., Japan. The useful discussions with M. Nakajima and technical assistance of J. Zhong and R. Pambayun were also acknowledged. The work in hybridoma cell culture was done through the collaboration with C. Perusich-Kussow and Prof. W. S. Hu, University of Minnesota, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matanguihan, R.M., Konstantinov, K.B. & Yoshida, T. Dielectric measurement to monitor the growth and the physiological states of biological cells. Bioprocess Engineering 11, 213–222 (1994). https://doi.org/10.1007/BF00387695

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387695

Keywords

Navigation