Skip to main content
Log in

Einfluß des Stoffwechsels auf die Pigmentzusammensetzung in alternden Kulturen von Euglena gracilis

Influence of the cell metabolism on the pigment composition in ageing cultures of Euglena gracilis

  • Published:
Planta Aims and scope Submit manuscript

Summary

The qualitative and quantitative composition of the carotenoids of young cells of Euglena gracilis strain 1224-5/9 corresponded to that of the “Z”-strain.

The frequently observed yellow-reddish discolouration of ageing cells was found to be caused by a heavy breakdown of the chlorophylls and not by an increased synthesis of the carotenoids.

Furthermore there could be observed a remarkable decrease in the concentration of diadinoxanthin together with an increase in the amount of zeaxanthin in the course of the stationary growth phase. This phenomenon was attributed to a direct deepoxidation of diadinoxanthin on the basis of experiments with 14C-diadinoxanthin showing a transformation of the pigment into zeaxanthin and some other Euglena carotenoids, e.g. neoxanthin and β-carotene.

Because of their interconvertibility diadinoxanthin and neoxanthin are regarded as auxiliary pigments for the photosynthetic O2-evolution.

The transformation of diadinoxanthin into zeaxanthin in the ageing cells coincides in time with the switch from an aerobic to an anerobic cell metabolism. The latter is characterized by a decrease in the O2-incorporation together with a simultaneous increase in the NADH-concentration and by a heavy excretion of glycolytic end products such as pyruvate and lactate after cell respiration has stopped completely. The transformation of diadinoxanthin into zeaxanthin is therefore attributed to a reduction of diadinoxanthin by the cytoplasmic NADH.

As the same pigment transformation could be observed in cells kept in darkness and under conditions of artificially stopped respiration, it is likely that this transformation takes place independently of photosynthetic processes.

The origin of the commutation of the cell metabolism and the cessation of respiration is still unknown. As the respiration of ageing cells can be revived in the darkness it is certainly linked to photosynthesis under light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Arnon, D. I.: Copper Enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).

    Google Scholar 

  • Bamji, M. S., Krinsky, N. I.: Carotenoid-deepoxidation in algae. II. Enzymatic conversion of antheraxanthin to zeaxanthin. J. Biol. Chem. 240, 467–470 (1965).

    PubMed  Google Scholar 

  • Brinkmann, K.: Temperatureinflüsse auf die circadiane Rhythmik von Euglena gracilis bei Mixotrophie und Autotrophie. Planta (Berl.) 70, 344–389 (1966).

    Google Scholar 

  • Bücher, T., Czok, R., Lamprecht, W., Latzko, E.: Pyruvat. Methoden der enzymatischen Analyse, S. 253–259, Hrsg. H. U. Bergmeyer, Weinheim/Bergstr.: Verlag Chemie 1962.

    Google Scholar 

  • Cartier, P. H.: Dosages des pyridines necléotides oxydés et réduits dans le sang et les tissus animaux. Europ. J. Biochem. 4, 247–255 (1968).

    PubMed  Google Scholar 

  • Costes, C.: Métabolisme de la lutéine et de la violaxanthine dans les chloroplastes. C. R. Soc. Biol. (Paris) 256, 5656–5659 (1963).

    Google Scholar 

  • Czygan, F.-Ch.: Sekundär-Carotinoide in Grünalgen. Arch. Mikrobiol. 61, 81–102 (1968).

    Google Scholar 

  • —, Kalb, K.: Untersuchungen zur Biogenese der Carotinoide in Trentepohlia aurea. Z. Pflanzenphysiol. 55, 59–64 (1966).

    Google Scholar 

  • Davies, B. H.: Analysis of carotenoid pigments. Chemistry and biochemistry of plant pigments, p. 489–532, ed. T. W. Goodwin. London-New York: Academic Press 1965.

    Google Scholar 

  • Dersch, G.: Mineralsalzmangel und Sekundärcarotinoide in Grünalgen. Flora (Jena) 149, 566–603 (1960).

    Google Scholar 

  • Egger, K.: Dünnschichtchromatographie der Chloroplastenpigmente. Planta (Berl.) 58, 664–667 (1962).

    Google Scholar 

  • —, Dabbagh, A. G., Nitsche, H.: Überführung von Neoxanthin in Diadinochrom. Tetrahedron Lett. 35, 2995–2998 (1969).

    Article  Google Scholar 

  • Estabrook, R. W., Maitra, P. K.: A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal. Biochem. 3, 369–382 (1962).

    PubMed  Google Scholar 

  • Godnev, T. N., Rotfarb, R. M.: The possibility of interconversions of carotenes and carotenols. Dokl. Akad. Nauk SSSR 147, 735–737 (1962).

    Google Scholar 

  • Goodwin, T. W., Gross, J. A.: Carotenoid distribution in bleached substrains of Euglena gracilis. J. Protozool. 5, 292–295 (1958).

    Google Scholar 

  • Harris, R. C., Kirk, J. T. O.: Control of chloroplast formation in Euglena gracilis. Biochem. J, 113, 195–205 (1969).

    PubMed  Google Scholar 

  • Hohorst, H.-J.: L-(+)-Lactat, Bestimmung mit Lactat-Dehydrogenase und DPN; L-(-)-Malat, Bestimmung mit Malat-Dehydrogenase und DPN. Methoden der enzymatischen Analyse, S. 226–277 u. 328–334, Hrsg. H. U. Bergmeyer. Weinheim/Bergstr. Verlag Chemie.

  • Hutner, S. H., Bach, M. K., Ross, G. I. M.: A sugar-containing basal medium for vitamin B12-assay with Euglena; application to body fluids. J. Protozool. 3, 101–112 (1956).

    Google Scholar 

  • Krinsky, N., Goldsmith, T. H.: The carotenoids of the flagellated alga, Euglena gracilis. Arch. Biochem. 91, 271–279 (1960).

    PubMed  Google Scholar 

  • Krinsky, N. I.: Carotenoid deepoxidation in algae. I. Phytochemical transformation of antheraxanthin to zeaxanthin. Biochem. biophys. Acta (Amst.) 88, 487–491 (1964).

    Google Scholar 

  • —, Gordon, A., Stern, A. I.: The appaerance of neoxanthin during the regreening of dark-grown Euglena. Plant Physiol. 38, 441–445 (1963).

    Google Scholar 

  • Leedale, C. F., Meuse, B. J. D., Pringsheim, E. G.: Structure and Physiology of Euglena spirogyra. Arch. Mikrobiol. 50, 68–102 (1965).

    Google Scholar 

  • Nitsche, H., Egger, K., Dabbagh, A. G.: Deepoxineoxanthin, das Hauptcarotinoid in Blüten von Mimulus gutatus. Tetrahedron Lett 35, 2999–3002 (1969).

    Article  Google Scholar 

  • Ohmann, E.: Azetataktivierung in Grünalgen. Biochim. biophys. Acta (Amst.) 82, 325–335 (1964).

    Google Scholar 

  • Pringsheim, E. G.: Farblose Algen, Stuttgart: Fischer 1963.

    Google Scholar 

  • Saakov, V. S.: Mechanism of change in violaxanthin content during the light reaction of chloroplasts. Dokl. Akad. Nauk SSSR 148, 1412–1414 (1963).

    Google Scholar 

  • —: Role of carotenoids in the mechanism of transfer of oxygen in photosynthesis. SSSR 155, 1212–1215 (1964).

    Google Scholar 

  • —: Metabolism of 14C-violaxanthin in leaves and its role in reactions of photosynthesis. Dokl. Akad. Nauk SSSR 165, 230–233 (1965).

    PubMed  Google Scholar 

  • —: Application of carbon-14 to the study of lutein metabolism. Dokl. Akad. Nauk SSSR 170, 460–463 (1966).

    PubMed  Google Scholar 

  • —: Mechanism of interconversion of exogenous carotenoids in Chlorella. Dokl. Akad. Nauk SSSR 174, 978–981 (1967).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenker, U. Einfluß des Stoffwechsels auf die Pigmentzusammensetzung in alternden Kulturen von Euglena gracilis . Planta 101, 101–116 (1971). https://doi.org/10.1007/BF00387621

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387621

Navigation