Skip to main content
Log in

Auxintransport und Phototropismus

I. Die lichtbedingte Bildung eines Hemmstoffes für den Transport von Wuchsstoffen in Koleoptilen

Auxin transport and phototropism

I. The light induced formation of an inhibitor of auxin transport in coleoptiles

  • Published:
Planta Aims and scope Submit manuscript

Summary

Short illumination of excised coleoptiles (with or without apex) inhibits the subsequent transport of IAA-2-14C in these sections during darkness.

To a certain extent the inhibition is dependent both on the light intensity and on the duration of illumination. Only the blue region of the visible spectrum is effective.

The light induced inhibition is due to a decrease of the quantity of IAA transported; on the other hand, the velocity of transport remains unchanged.

The inhibition of auxin transport can be observed only if coleoptiles contain endogenous or fed auxin during the preceding illumination period. Besides illumination inhibition of auxin transport can also be brought about by incubation of coleoptile sections with a previously illuminated IAA/FMN solution.

Auxin transformed by peroxidase operates in the same way. The different oxidation products of IAA in the solutions used were identified: The only product which inhibits elongation growth and auxin transport was 3-M. The conversion of IAA to 3-M is accomplished by crude cell-free extracts from corn coleoptiles.

An increased formation of labeled 3-M from IAA-2-14C during illumination of coleoptiles could be demonstrated.

Since 3-M is not actively transported in coleoptiles, it must be assumed that 3-M functions as an inhibitor of auxin transport only at its site of formation.

It is concluded that the phototropic curvature of coleoptiles and stems is triggered by the photooxidative formation of 3-M from IAA in the side exposed to light. The flow of growth substances will be partly blocked by 3-M in this side and can be directed to the shaded side.

On the strength of these findings some phenomena of phototropism (transmission of stimulus, “mneme”, quantum yield) can easily be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FMN:

Flayinmononucleotid

IES:

Indol-3-essigsäure

3-M:

3-Methylenoxindol

NES:

α-Naphthylessigsäure

Literatur

  • Abbramovitch, R. A., and K. S. Ahmed: Oxidative decarboxylation of indole-3-acetic acid by mangani-versene and by wheat leaf enzyme. Nature (Lond.) 192, 259–260 (1961)

    Google Scholar 

  • Boysen-Jensen, P.: Die phototropische Induktion in der Spitze der Avena-coleoptile. Planta (Berl.) 5, 464–477 (1928).

    Google Scholar 

  • Brauner, L.: Über den Mechanismus der Photolyse des Heteroauxins. Naturwissenschaften 40, 23–25 (1952).

    Google Scholar 

  • —: Untersuchungen über die Photolyse des Heteroauxins. I. Z. Bot. 41, 291–341 (1953).

    Google Scholar 

  • —, u. A. Böck: Versuche zur Analyse der geotropischen Perception. IV. Untersuchungen über die Auswirkungen der Dekapitierung auf den Wuchsstoffgehalt, das Längenwachstum und die geotrop. Krümmungsfähigkeit von Helianthus-Hypokotylen. Planta (Berl.) 60, 109–130 (1963).

    Google Scholar 

  • —, u. M. Brauner: Untersuchungen über die Photolyse des Heteroauxins. II. Z. Bot. 42, 83–142 (1954).

    Google Scholar 

  • Briggs, W. R.: Mediation of phototropic responses of corn coleoptiles by lateral transport of auxin. Plant Physiol. 38, 237–247 (1963a).

    Google Scholar 

  • —: The phototropic responses of higher plants. Ann. Rev. Plant Physiol. 14, 311–352 (1963b).

    Article  Google Scholar 

  • —: Red light, auxin relationship, and the phototropic responses of corn and oat coleoptiles. Amer. J. Bot. 50, 196–207 (1963c).

    Google Scholar 

  • —: Phototropism in higher plants. In: Photophysiology (A. C. Giese, ed.), vol. I, p. 223–271. New York-London: Academie Press 1964.

    Google Scholar 

  • — R. D. Tocher, and J. F. Wilson: Phototropic auxin redistribution in corn coleoptiles. Science 126, 210–212 (1957).

    PubMed  Google Scholar 

  • Bünning, E.: Phototropismus und Carotinoide. III. Weitere Untersuchungen an Pilzen und Höheren Pflanzen. Planta (Berl.) 27, 583–610 (1938).

    Google Scholar 

  • Cholodny, N.: Beiträge zur Analyse der geotrop. Reaktion. Jb. wiss. Bot. 65, 447–459 (1926).

    Google Scholar 

  • Diemer, R.: Untersuchungen des phototropischen Induktionsvorganges an Helianthus-Keimlingen. Planta (Berl.) 57, 111–137 (1961).

    Google Scholar 

  • Fang, S. C., P. Theisen, and J. S. Butts: Metabolic studies of applied indole-acetic acid-1-14C in plant tissues as affected by light and 2,4-D treatment. Plant Physiol. 34, 26–32 (1959).

    Google Scholar 

  • Fukuyama, T. T., and H. S. Moyed: Inhibition of cell growth by photooxidation products of indole-3-acetic acid. J. biol. Chem. 239, 2392–2397 (1964).

    PubMed  Google Scholar 

  • Galston, A. W.: Riboflavin-sensitized photooxidation of indoleacetic acid and related compounds. Proc. nat. Acad. Sci. (Wash.) 35, 10–17 (1949).

    Google Scholar 

  • —: Phototropism of stems, roots and coleoptiles. In: Ruhland, Handbuch der Pflanzenphysiologie, Bd. XVII, 1, S. 492–524. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • —, and R. S. Baker: Studies on the physiology of light action. II. The photodynamic action of riboflavin. Amer. J. Bot. 36, 773–780 (1949).

    Google Scholar 

  • ——: Studies on the physiology of light action. III. Light activation of a flavoprotein enzyme by reversal of a naturally occuring inhibition. Amer. J. Bot. 38, 190–195 (1951).

    Google Scholar 

  • Goldschmidt, E. E., R. Goren, and S. P. Monselise: The IAA-oxidase system of Citrus roots. Planta (Berl.) 72, 213–222 (1967).

    Google Scholar 

  • Guttenberg, H. v.: Über die Perzeption des phototropen Reizes. Planta (Berl.) 53, 412–433 (1959).

    Google Scholar 

  • —, u. K. Zetsche: Der Einfluß des Lichtes auf die Auxinbildung und den Auxintransport. Planta (Berl.) 48, 99–134 (1956).

    Google Scholar 

  • Hager, A.: Das geotropische “Gedächtnis” der Pflanzen. Wiss. Z. Univ. Rostock 16 (Math.-Naturw. Reihe), 549–558 (1967). In: Wachstumsregulatoren bei Pflanzen. Intern. Vortragstagg Rostock/Kühlungsborn 1966. Jena: VEB Fischer 1967.

    Google Scholar 

  • —, u. R. Schmidt: Auxintransport und Phototropismus. II. Der Hemmechanismus des aus IES gebildeten Photooxidationsproduktes 3-Methylenoxindol beim Transport von Wuchsstoffen. Planta (Berl.) 83, 372–386 (1968).

    Google Scholar 

  • —, u. U. Schmidt: Zum Problem der geotropischen Induktion. Ber. dtsch. bot. Ges. 76, 329–341 (1963).

    Google Scholar 

  • Hinman, R. L., C. Bauman, and J. Lang: The conversion of indole-3-acetic acid to 3-methylenoxindole in the presence of peroxidase. Biochem. biophys. Res. Commun. 5, 250–254 (1961).

    PubMed  Google Scholar 

  • Libbert, E., u. H. Bormann: Die Aktivität der IES-Oxydase in phototropisch gereizten Pflanzen. Flora (A) 157, 68–79 (1966).

    Google Scholar 

  • Meyer, J.: Die photolytischen Abbauprodukte der 3-Indolessigsäure und ihre physiologische Wirkung auf das Wachstum der Avena-Koleoptile. Z. Bot. 46, 125–160 (1958).

    Google Scholar 

  • —, u. R. Pohl: Neue Erkenntnisse zum Problem der phototropen Krümmung bei höheren Pflanzen. Naturwissenschaften 43, 114–115 (1956).

    Google Scholar 

  • Moyed, H. S., and V. Williamson: 3-Methyleneoxindole reductase from peas. Plant Physiol. 42, 510–514 (1967a).

    PubMed  Google Scholar 

  • ——: Multiple 3-methyleneoxindole reductases from peas. Differential inhibition by synthetic auxins. J. biol. Chem. 242, 1075–1077 (1967b).

    PubMed  Google Scholar 

  • Naqvi, S. M., and S. A. Gordon: Auxin transport in Zea mays coleoptiles. II. Influence of light on the transport of indoleacetic acid-2-14C. Plant Physiol. 42, 138–143 (1967).

    Google Scholar 

  • Pickard, G. B., and K. V. Thimann: Immediate cause of phototropic curvature in the maize seedling. Science 140, 364 (1963).

    Google Scholar 

  • ——: Transport and distribution of auxin during tropistic response. II. The lateral migration of auxin in phototropism of coleoptiles. Plant Physiol. 39, 341–350 (1964).

    Google Scholar 

  • Pohl, R.: Ein Beitrag zur Analyse des Streckungswachstums der Pflanzen. Planta (Berl.) 36, 230–261 (1949).

    Google Scholar 

  • Ray, P. M.: The destruction of indoleacetic acid. II. Spectrophotometric study of the enzymatic reaction. Arch. Biochem. 64, 193–216 (1956).

    PubMed  Google Scholar 

  • Reisener, H. J.: Untersuchungen über den Phototropismus der Hafer-Koleoptile. Z. Bot. 46, 474–505 (1958).

    Google Scholar 

  • Sequeira, L., and L. Mineo: Partial purification and kinetics of indoleacetic acid oxidase from tobacco roots. Plant Physiol. 41, 1200–1208 (1966).

    Google Scholar 

  • Shen-Miller, J., and S. A. Gordon: Hormonal relations in the phototropic response. III. the movement of 14C-labeled and endogenous indoleacetic acid in phototropically stimulated Zea coleoptiles. Plant Physiol. 41, 59–65 (1966a).

    Google Scholar 

  • ——: Hormonal relations in the phototropic response. IV. Light-induced changes of endogenous auxins in the coleoptile. Plant Physiol. 41, 831–841 (1966b).

    Google Scholar 

  • Still, C. C., T. T. Fukuyama, and H. S. Moyed: Inhibitory oxidation products of indole-3-acetic acid: Mechanism of action and route of detoxification. J. biol. Chem. 240, 2612–2618 (1965b).

    PubMed  Google Scholar 

  • Thimann, K. V., and G. M. Curry: Phototropism and Phototaxis. In; Comparative biochem., vol. I. Ed. Florkin and Mason. New York: Academic Press 1960.

    Google Scholar 

  • Thornton, R. M., and K. V. Thimann: Transient effects of light on auxin transport in the Avena coleoptile. Plant Physiol. 42, 247–257 (1967).

    Google Scholar 

  • Tuli, V., and H. S. Moyed: Inhibitory oxidation products of indole-3-acetic acid: 3-Hydroxy-methyloxindole and 3-methyleneoxindole as plant metabolits. Plant Physiol. 42, 425–530 (1967).

    Google Scholar 

  • Went, F. W.: Wuchsstoff und Wachstum. Rec. trav. bot. néerl. 25, 1–116 (1929).

    Google Scholar 

  • Whitehouse, R. L., and S. Zalik: Translocation of indole-3-acetic-1-14C and Tryptophan-I-14C in seedling of Phaseolus coccineus L. and Zea mays L. Plant Physiol. 42, 1363–1372 (1967).

    Google Scholar 

  • Zenk, M. H.: Untersuchungen zum Phototropismus der Avena-Koleoptile. I. Photooxydationen in vivo. Z. Pflanzenphysiol. 56, 57–69 (1967a).

    Google Scholar 

  • —: Untersuchungen zum Phototropismus der Avena-Koleoptile. II. Pigmente. Z. Pflanzenphysiol. 56, 122–141 (1967b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. L. Brauner zum 70. Geburtstag in Dankbarkeit gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, A., Schmidt, R. Auxintransport und Phototropismus. Planta 83, 347–371 (1968). https://doi.org/10.1007/BF00387616

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387616

Navigation