Skip to main content
Log in

Epidermolysis bullosa herpetiformis (Dowling-Meara type) exhibits ultrastructural derangement of tonofilaments and desmosomes

  • Original Contributions
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Ultrastructural and immunohistochemical studies of clinically intact skin obtained from three severe neonatal cases of epidermolysis bullosa herpetiformis (Dowling-Meara type) demonstrated disorders in the assembly of keratin intermediate filaments and desmosomes of the keratinocytes. During mitosis, K5- and K14-positive and K1- and K10-negative tonofilaments were disrupted and formed spherical bodies associated with intracytoplasmic desmosomes by invagination of the desmosomes and the adjacent plasma membrane. During the invagination process, destructive changes in the internalized membrane were noted. These were accompanied by gradual loss of reactivity with a monoclonal antibody ZK31, which detected plasma membrane adjacent to the attachment plaques of desmosomes. However, the reactivity of the attachment plaques of the internalized desmosomes for desmoplakins and desmoglein did not decline during the process of internalization. In the suprabasal layers of the epidermis, filamentous substructures and K1 and K10 appeared at the periphery of the spherical bodies. Simultaneously, the desmosomes that were sparsely located in the lower epidermis, increased in number as cell differentiation progressed. Thus, the keratinocytes attained an almost normal appearance with respect to tonofilaments and desmosomes by the time they reached the upper layer of the epidermis. These findings may be relevant to the mechanism responsible for the clinical appearance of the herpetiform blisters in epidermolysis bullosa herpetiformis, which are also characterized by spontaneous involution during childhood or when exposed to high ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dowling GB, Meara RH (1954) Epidermolysis bullosa resembling juvenile dermatitis herpetiformis. Br J Dermatol 66: 139–143

    PubMed  Google Scholar 

  2. Gedde-Dahl T (1981) Sixteen types of epidermolysis bullosa. Acta Derm Venereol (Stockh) 95: 74–87

    Google Scholar 

  3. Anton-Lamprecht I, Schnyder UW (1982) Epidermolysis bullosa herpetiformis, Dowling-Meara. Dermatologica 164: 221–235

    PubMed  Google Scholar 

  4. Niemi K-M, Kero M, Kanerva L, Mattila R (1983) Epidermolysis bullosa simplex: a new histologic subgroup. Arch Dermatol 119: 138–141

    Article  PubMed  Google Scholar 

  5. Kero M, Niemi K-M (1986) Epidermolysis bullosa. Int J Dermatol 25: 75–82

    PubMed  Google Scholar 

  6. Coulombe PA, Hutton ME, Letai A, Hebert A, Paller AS, Fuchs E (1991) Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66: 1301–1311

    Article  PubMed  Google Scholar 

  7. Lane EB, Rugg EL, Navsaria H, Leigh IM, Heagerty AHM, Yamamoto AI, Eady RAJ (1992) A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature 356: 244–245

    Article  PubMed  Google Scholar 

  8. Yamamoto AI, McGrath JA, Chapman SJ, Leigh IM, Lane EB, Eady RAJ (1991) Epidermolysis bullosa simplex (Dowling-Meara type) is a genetic disease characterized by an abnormal keratin-filament network involving keratins K5 and K14. J Invest Dermatol 97: 956–968

    Google Scholar 

  9. Furumura M, Imayama S, Hori Y (1993) Three neonatal cases of epidermolysis bullosa herpetiformis (Dowling-Meara type) with severe erosive skin lesions. J Am Acad Dermatol 28: 859–861

    PubMed  Google Scholar 

  10. Altman LG, Schneider BG, Papermaster DS (1984) Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy. J Histochem Cytochem 32: 1217–1223

    PubMed  Google Scholar 

  11. Bendayan M (1982) Double immunochemical labelling applying the protein A-gold technique. J Histochem Cytochem 30: 81–85

    PubMed  Google Scholar 

  12. Stirling JW (1990) Immuno- and affinity probes for electron microscopy: a review of labelling and preparation techniques. J Histochem Cytochem 38: 145–147

    PubMed  Google Scholar 

  13. Gown AM, Vogel AM (1985) Monoclonal antibodies to human intermediate filament proteins. Am J Clin Pathol 84: 413–424

    PubMed  Google Scholar 

  14. Broers JL, Carney DN, Klein-Rot M, Schaart G, Lane EB, Vooijs GP, Ramaekers FC (1986) Intermediate filament proteins in classic and variant types of small cell lung carcinoma cell lines: a biochemical and immunochemical analysis using a panel of monoclonal and polyclonal antibodies. J Cell Sci 83: 37–60

    PubMed  Google Scholar 

  15. Gown AM, Vogel AM (1982) Monoclonal antibodies to intermediate filament proteins of human cells: unique and cross-reacting antibodies. J Cell Biol 95: 414–424

    Article  PubMed  Google Scholar 

  16. Herman CJ, Vegt PD, Debruyne FM, Vooijs GP, Ramaekers FC (1985) Squamous and transitional elements in rat bladder carcinomas induced by N-butyl-N-4-hydroxybutyl nitrosamine (BBN). Am J Pathol 120: 419–426

    PubMed  Google Scholar 

  17. Viac J, Reano A, Brochier J, Staquet M-J, Thivolet J (1983) Reactivity pattern of a monoclonal antikeratin antibody (KL1). J Invest Dermatol 81: 351–354

    Article  PubMed  Google Scholar 

  18. Caselitz J, Walther B, Wustrow J, Seifert G, Weber K (1986) A monoclonal antibody that detects myoepithelial cells in exocrine glands, basal cells in other epithelia and basal and suprabasal cells in certain hyperplastic tissues. Virchows Arch [A] 409: 725–738

    Google Scholar 

  19. Schmelz M, Duden R, Cowin P, Franke WW (1986) A constitutive transmembrane glycoprotein of Mr 165,000 (desmoglein) in epidermal and non-epidermal desmosomes. I. Biochemical identification of the polypeptide. Eur J Cell Biol 42: 177–183

    PubMed  Google Scholar 

  20. Cowin P, Kapprell H-P, Franke WW (1985) The complement of desmosomal plaque proteins in different cell types. J Cell Biol 101: 1442–1454

    Article  PubMed  Google Scholar 

  21. Lang AB, Odermatt BF, Ruettner JR (1986) Monoclonal antibodies to human cytokeratins: applications to various epithelial and mesothelial cells. Exp Cell Biol 54: 61–72

    PubMed  Google Scholar 

  22. Kitajima Y, Inoue S, Yaoita H (1989) Abnormal organization of keratin intermediate filaments in cultured keratinocytes of epidermolysis bullosa simplex. Arch Dermatol Res 281: 5–10

    PubMed  Google Scholar 

  23. Kitajima Y, Jokura Y, Yaoita H (1993) Electron microscopic and immunofluorescence study of spherical aggregation of keratin intermediate filaments in cultured keratinocytes and biopsied epidermis of epidermolysis bullosa simplex, Dowling-Meara type (abstract). Clin Exp Dermatol 18: 179

    Google Scholar 

  24. Eichner R, Sun T-T, Eichner R, Sun T-T, Aebi U (1986) The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments. J Cell Biol 102: 1767–1777

    Article  PubMed  Google Scholar 

  25. Kartasova T, Roop DR, Holbrook KA, Yuspa SH (1993) Mouse differentiation-specific keratins 1 and 10 require a preexisting keratin scaffold to form a filament network. J Cell Biol 120: 1251–1261

    Article  PubMed  Google Scholar 

  26. Tidman MJ, Eady RA, Leigh IM, MacDonald DM (1988) Keratin expression in epidermolysis bullosa simplex (Dowling-Meara). Acta Derm Venereol (Stockh) 68: 15–20

    Google Scholar 

  27. Anton-Lamprecht I, Gedde-Dahl J, Schnyder UW (1979) Ultrastructural characterization of a new dominant epidermolysis genotype. J Invest Dermatol 72: 280

    Google Scholar 

  28. Haber RM, Hanna W, Ramsay CA, Boxall LBH (1985) Hereditary epidermolysis bullosa. J Am Acad Dermatol 13: 252–278

    PubMed  Google Scholar 

  29. Hashimoto I, Katabira Y, Mihashi Y, Nomura K, Sato S, Yagihashi Y, Matsumura K (1985) PUVA therapy for epidermolysis bullosa hereditaria (abstract, in Japanese). Jpn J Dermatol 95: 1348

    Google Scholar 

  30. Thuringer JM, Katzberger AA (1959) The effect of age on mitosis in the human epidermis. J Invest Dermatol 33: 35–39

    PubMed  Google Scholar 

  31. Indo K, Wilson RB (1977) Fetal rat keratinizing epidermal cells in culture: effects of long-term treatment by benzopyrene on their growth characteristics. J Natl Cancer Inst 59: 867–880

    PubMed  Google Scholar 

  32. Gelfant S (1982) “Of mice and men” the cell cycle in human epidermis in vivo. J Invest Dermatol 78: 296–299

    Article  PubMed  Google Scholar 

  33. Walter JF, Voorhees JJ, Kelsey WH, Duell EA (1973) Psoralen plus black light inhibits epidermal DNA synthesis. Arch Dermatol 107: 861–865

    Article  PubMed  Google Scholar 

  34. Aikawa Y, Yoshiike T, Kawamoto T, Nishimura K, Kawai H, Ogawa H (1992) Indication of PUVA on atopic dermatitis and effects on variable parameters. Jpn J Dermatol 102: 991–994

    Google Scholar 

  35. Buchbinder LH, Lucky AW, Ballard E, Stanley JR, Stolar E, Tabas M, Bauer EA, Paller AS (1986) Severe infantile epidermolysis bullosa simplex, Dowling-Meara type. Arch Dermatol 122: 190–198

    Article  PubMed  Google Scholar 

  36. Dahm LS, James LS (1972) Newborn temperature and calculated heat loss in the delivery room. Pediatrics 49: 504–513

    PubMed  Google Scholar 

  37. Tahti E, Lind J, Osterlund K, Rylander E (1972) Changes in skin temperature of the neonate at birth. Acta Paediatr Scand 61: 159–164

    PubMed  Google Scholar 

  38. Takamori K, Naito K, Ogawa H (1983) Epidermolysis bullosa simplex blister fluid induces an intra-epidermal blister in cultured normal skin. Br J Dermatol 109: 643–646

    PubMed  Google Scholar 

  39. Cooper TW, Bauer EA (1984) Epidermolysis bullosa: a review. Pediatr Dermatol 1: 181–188

    PubMed  Google Scholar 

  40. Schenk P (1975) Desmosomale Strukturen im cytoplasma normaler und pathologischer keratinocyten. Arch Dermatol Res 253: 23–42

    PubMed  Google Scholar 

  41. Seiji M, Mizuno F (1969) Electron microscopic study of Bowen's disease. Arch Dermatol 99: 3–16

    Article  PubMed  Google Scholar 

  42. Caputo R, Prandi G (1972) Intracytoplasmic desmosomes. J Ultrastruct Res 41: 358–368

    PubMed  Google Scholar 

  43. Arai H, Hori Y (1977) An ultrastructural observation of intracytoplasmic desmosomes in Darier's disease. J Dermatol 4: 223–234

    PubMed  Google Scholar 

  44. Wolff K, Wolff-Schreiner EC (1976) Trends in electron microscopy of skin. J Invest Dermatol 67: 39–57

    Article  PubMed  Google Scholar 

  45. Komura J, Watanabe S (1975) Desmosome-like structures in the cytoplasm of normal human keratinocyte. Arch Dermatol Res 253: 145–149

    PubMed  Google Scholar 

  46. Wolff-Schreiner EC, Karnovsky MJ (1972) Intracellular desmosome (abstract). J Invest Dermatol 58: 258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furumura, M., Imayama, S. & Hori, Y. Epidermolysis bullosa herpetiformis (Dowling-Meara type) exhibits ultrastructural derangement of tonofilaments and desmosomes. Arch Dermatol Res 286, 233–241 (1994). https://doi.org/10.1007/BF00387594

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387594

Key words

Navigation