Skip to main content
Log in

Untersuchungen über die Rolle der Kieselsäure in der Entwicklung höherer Pflanzen

Studies on the role of silicic acid in the development of higher plants

I. Analyse der Hemmung durch Germaniumsäure

  • Published:
Planta Aims and scope Submit manuscript

Summary

Germanium acid, a specific inhibitor of the silicic acid metabolism in diatoms, inhibits the growth of Sinapis alba, Lemna minor, Wolffia arrhiza, Nicotiana tabacum, Tradescantia spec, Zinnia elegans, and Secale cereale when applied in the same concentrations as those used in the case of diatoms (15–75 μg GeO2/ml medium). The growth of Aspergillus niger, Phycomyces blakesleanus, Escherichia coli K 12, Euglena gracilis and Pandorina morum is not influenced by these and higher concentrations of Germanium acid. By application of high concentrations of silicic acid, the growth inhibition produced by germanium acid in Lemna minor is partially reduced. Plants of Lemna minor which have been inhibited by germanium acid are essentially smaller than plants grown in a normal medium; their chlorophyll content is significantly decreased. The growth of the roots in Lemna is particularly inhibited. Isolated growing roots of Lycopersicon pimpinellifolium Mill. are inhibited by small concentrations of Ge(OH)4 (ca. 1,5×10-4 M/l). In contrast to the growth of older plants, the germination of Secale cereale and Sinapis alba is not influenced by Ge(OH)4. The effects of germanium acid are discussed in relation to the physiological role of silicic acid. The results suggest that the element silicon, in the form of silicic acid, is generally essential for the normal development of higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bollard, E. G., and G. W. Butler: Mineral nutrition of plants. Ann. Rev. Plant Physiol. 17, 77–112 (1966).

    Article  Google Scholar 

  • Bornkamm, R.: Die Rolle des Oxalats im Stoffwechsel höherer grüner Pflanzen. Untersuchungen an Lemna minor L. Flora (Jena) 156, 139–171 (1965).

    Google Scholar 

  • Cathey, H. M.: Physiology of growth retarding chemicals. Ann. Rev. Plant Physiol. 15, 271–302 (1964).

    Article  Google Scholar 

  • Fritz, G. J.: Assimilation of minerals by higher plants. Nature (Lond.) 197, 843–846 (1963).

    Google Scholar 

  • Grosse-Braukmann, E.: Maßnahmen zur Mehltaubekämpfung bei verschiedenen Gerstensorten, ihre Erfolgsaussichten und ihr Einfluß auf den Mineralstoffgehalt. Z. Pflanzenernährg 65, 689 (1958).

    Google Scholar 

  • Heller, R.: Réchèrches sur la nutrition minerale des tissus végétaux cultives in vitro. Thèse Paris 1953.

  • Hewitt, E. J.: The essential nutrient elements: requirements and interactions in plants. In: Plant physiology, vol 3, p. 137–360. New York: Academic Press 1963.

    Google Scholar 

  • James, W. O.: Pflanzenphysiologie. Berlin: Paul Parey 1965.

    Google Scholar 

  • Jones, L. H. P., A. A. Milne, and S. M. Wadham: Studies of silica in the oat plant II. Distribution of the silica in the plant. Plant and Soil 18, 358–371 (1963).

    Google Scholar 

  • Knickmann, E.: Silizium und Pflanze. Landwirtsch. Forsch. 15, 130–134 (1962).

    Google Scholar 

  • Knop, W.: Quantitativ analytische Arbeiten über den Ernährungsprozeß der Pflanzen. Landwirtsch. Vers.-Stat. 3, 295–324 (1861).

    Google Scholar 

  • Kuhl, A., and H. Lorenzen: Handling and culturing of Chlorella. In: D. M. Prescott, Methods in cell physiology, vol. I p. 159–187. New York and London: Academic Press 1964.

    Google Scholar 

  • Lanning, F. C., B. W. X. Ponnaiya, and C. F. Crumpton: The chemical nature of silica in plants. Plant Physiol. 33, 339–343 (1958).

    Google Scholar 

  • Lewin, J. C.: Silicon metabolism in diatoms I. Evidence for the role of reduced sulfur compounds in Si-utilization. J. gen. Physiol. 37, 589–599 (1954).

    Article  PubMed  Google Scholar 

  • —: Silicon metabolism in diatoms V. Germanium Dioxide, a specific inhibitor of diatom growth. Phycologia 6, 1–12 (1966).

    Google Scholar 

  • Lockhart, J. A.: Kinetic studies of certain anti-gibberellins. Plant Physiol. 37, 759–764 (1962).

    Google Scholar 

  • Müller, H. M.: Untersuchungen zum Säurestoffwechsel von Aspergillus niger. Arch. Mikrobiol. 52, 251–265 (1965).

    Google Scholar 

  • Okuda, A., and E. Takahashi: The role of silicon. In: Mineral nutrition of the rice plant, chap. 10, p. 123–146. Proc. Internat. Conf. Rice Res. Inst., Los Banos, Philipines, Februar 1964. Baltimore: John Hopkins Press 1965.

    Google Scholar 

  • Parry, D. W., and F. Smithson: Types of opaline silica depositions in the leaves of british grasses. Ann. Bot. 28, 169–185 (1964).

    Google Scholar 

  • Sachs, J. v.: Lectures on the physiology of plants. English ed. oxford: Clarendon Press 1887.

    Google Scholar 

  • Scheefer, F. u. R. Henze: Die Bedeutung des Siliziums in Thomasschlacken für die Ernährung von Pflanzen. Phosphorsäure 22, 242–248 (1962).

    Google Scholar 

  • Schopfer, W. H.: Vitamine und Wachstumsfaktoren bei den Mikroorganismen, mit besonderer Berücksichtigung des Vitamins B1. Ergebn. Biol. 16, 1–172 (1939).

    Google Scholar 

  • Stiles, W.: Essential micro-(trace) elements In: Handbuch der Pflanzenphysiologie, (Herausg. G. Michael), Bd. IV, S. 558–614. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Tolbert, N. E.: Gibberellins. Advances in chemistry. Ser. Amer. Chem. Soc. 28, 145–151 (1961).

    Google Scholar 

  • Ulrich, W.: Vergleichende Untersuchungen an Euglena und Chlorella bei autotropher, mixotropher und heterotropher Ernährung. Diss. Göttingen 1964.

  • Umemura, Y., I. Nishida, T. Akazawa, and I. Uritani: Effects of silicon compounds on plant enzymes, involved in phosphorus metabolism. Arch. Biochem. 92, 392–398 (1961).

    PubMed  Google Scholar 

  • Volk, R. J., R. P. Kahn, and R. L. Weintraub: Silicon content of the rice plant as a factor influencing its resistance to infection by the blastfungus Pirizularia oryzae. Phytopathology 48, 179–184 (1958).

    Google Scholar 

  • Wagner, F.: Die Bedeutung der Kieselsäure für das Wachstum einiger Kulturpflanzen, ihren Nährstoffhaushalt und ihre Anfälligkeit gegen echte Mehltaupilze. Phytopath. Z. 12, 427–479 (1940).

    Google Scholar 

  • Werner, D.: Die Kieselsäure im Stoffwechsel von Thalassiosira fluviatilis Hust. Diss. Göttingen 1965.

  • —: Die Kieselsäure im Stoffwechsel von Cyclotella cryptica Reimann, Lewin und Guillard. Arch. Mikrobiol. 55, 278–308 (1966).

    Google Scholar 

  • Werner, D.: Hemmung der Chlorophyllsynthese und der NADP+-abhängigen Glycerinaldehyd-3-Phosphat-Dehydrogenase durch Germaniumsäure bei Cyclotella cryptica. Arch. Mikrobiol. (im Druck) (1967).

  • White, P. R.: The cultivation of animal and plant cells. New York: Ronald Press Co. 1954.

    Google Scholar 

  • Wittwer, S. H., and N. E. Tolbert: 2-Chloroethyl-trimethylammoniumchlorid and related compounds as plant growth substances V. Growth, flowering and fruiting responses as related to those, induced by auxin and gibberellin. Plant Physiol. 35, 871–877 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, D. Untersuchungen über die Rolle der Kieselsäure in der Entwicklung höherer Pflanzen. Planta 76, 25–36 (1967). https://doi.org/10.1007/BF00387419

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387419

Navigation