Skip to main content
Log in

Development of reactor model for glucose isomerization catalyzed by whole-cell immobilized glucose isomerase

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Based on the kinetic constants determined and the mathematical model of the reactor system developed, the performance of axial flow packed bed continuous enzyme reactor system was studied experimentally and also simulated with the aid of a computer for ultimate objective of optimization of the glucose isomerase reactor system.

A reactor model was established analogous to heterogeneous catalytic reactor model taking into account the effect of fluid mass transfer and reversible kinetics. The investigated catalyst system consists of immobilized Streptomyces bambergiensis cells containing the enzyme glucose isomerase, which catalyzes the isomerization of glucose to fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A 0, A 1, A 2 :

parameters in axial dispersion reactor model

c go, cg, cgemol m−3 :

glucose concentration at time t=0, at any time and at equilibrium conditions

c gsmol m−3 :

glucose concentration at particle surface

C :

dimensionless glucose concentration

d pm:

particle diameter

d rm:

diameter of reactor tube

Da :

Damkohler number

D eff m2 s−1 :

effective glucose diffusion coefficient in Ca-alginate gel beads

k fm s−1 :

film transfer coefficient

K e :

equilibrium constant

K mg, Kmfmol m−3 :

Michaelis-Menten constant for glucose and fructose, respectively

K mmol m−3 :

modified Michaelis-Menten constant

K :

dimensionless parameter

K * :

dimensionless parameter

L m:

length of reactor tube

Pe :

Peclet number

Pe p :

particle Peclet number

Q m3 s−1 :

volumetric flow rate

(-r g) mol m−3 s−1 :

reaction rate

Re p :

Reynolds particle number

Sc :

Schmidt number

Sh :

Sherwood number

t s:

time

v 0 m s−1 :

linear superficial fluid velocity

V mg, Vmfmol g−1 s−1 :

maximal reaction rate for glucose and fructose, respectively

V mmol m−3 s−1 :

modified maximal reaction rate for glucose

V xmg mol m−2 s−1 :

maximal reaction rate for glucose

X g, Xge :

glucose conversion and glucose conversion at equilibrium conditions

X :

normalized conversion

Y :

dimensionless glucose concentration

ε :

void fraction of fixed bed

η′ :

effectiveness factor of biocatalyst

η Pa s:

kinematic viscosity of substrate

μ 1 s:

first absolute weighted moment

μ′2 s2 :

second central weighted moment

ϱ gkg m−3 :

substrate density

ϱ pkg m−3 :

particle density

σ 2θ :

dimensionless variance of RTD curve

τ s:

residence time

References

  1. Saini, R.; Vieth, W. R.: Reaction kinetics and mass transfer in glucose isomerization with collagen-immobilized whole-microbial cells. J. Appl. Chem. Biotechnol. 25 (1975) 115–141

    Google Scholar 

  2. Emery, A. N.; Cardoso, J. P.: Parameter evaluation and performance studies in a fluidized-bed immobilized enzyme reactor. Biotechnol. Bioeng. 20 (1978) 1903–1929

    Google Scholar 

  3. Lee, S. B.; Kim, S. M.; Ryu, D. D. Y.: Effects of external diffusion and design geometry on the performance of immobilized glucose isomerase reactor system. Biotechnol. Bioeng. 21 (1979) 2023–2043

    Google Scholar 

  4. Boersma, J. G.; Vellenga, K.; de Wilt, H. G. J.; Joosten, G. E. H.: Mass-Transfer effects on the rate of isomerization of D-glucose into D-fructose catalyzed by wholle-cell immobilized glucose isomerase. Biotechnol. Bioeng. 21 (1979) 1711–1724

    PubMed  Google Scholar 

  5. Beck, M.; Kiesser, T.; Perrier, M.; Bauer, W.: Modelling glucose/fructose isomerization with immobilized glucose isomerase in fixed and fluidized bed reactors. Can. J. Chem. Eng. 64 (1986) 553–560

    Google Scholar 

  6. Sirotti, D. A.; Emery, A.: Mass transfer parameters in an immobilized glucoamylase column by pulse response analysis. Biotechnol. Bioeng. 25 (1983) 1773–1779

    Google Scholar 

  7. Tanaka, H.; Matsumura, M.; Veliky, I. A.: Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol. Bioeng. 26 (1984) 53–58

    Google Scholar 

  8. Reagan, D. L.; Lilly, M. D.; Dunnill, P.: Influence of intraparticle diffusional limitation on the observed kinetics of immobilized enzyme and on catalyst design. Biotechnol. Bioeng. 16 (1974) 1081–1093

    PubMed  Google Scholar 

  9. Bailey, J. E.; Ollis, D. F.: Biochemical engineering fundamentals, pp. 204–208. New York: McGraw-Hill 1986

    Google Scholar 

  10. Levenspiel, O.: Chemical reaction engineering, pp. 277. New York: J. Wiley 1972

    Google Scholar 

  11. Anderssen, A. S.; White, E. T.: Parameter estimation by the weighted moments method. Chem. Eng. Sci. 26 (1971) 1203–1221

    Article  Google Scholar 

  12. Dische, Z.; Borenfreund, E.: A new spectrophotometric method for the detection and determination of keto sugars and trioses. J. Biol. Chem. 192 (1951) 583–587

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasić-Rački, D., Pavlović, N., Čižmek, S. et al. Development of reactor model for glucose isomerization catalyzed by whole-cell immobilized glucose isomerase. Bioprocess Engineering 7, 183–187 (1991). https://doi.org/10.1007/BF00387415

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387415

Keywords

Navigation