Skip to main content
Log in

The transport and metabolism of 14C-labelled indoleacetic acid in intact pea seedlings

  • Published:
Planta Aims and scope Submit manuscript

Summary

Part of the IAA-I- or IAA-2-14C applied at low concentrations to the apices of intact, light-grown dwarf pea seedling was transported unchanged to the root system The calculated velocity of transport in the stem was 11 mm per hour. In the root the label accumulated in the developing lateral root primordia.

A large proportion of the applied IAA was converted by tissues of the apical bud, stem and root to indole-3-acetyl-aspartic acid (IAAsp). This compound was not transported. In addition evidence was obtained for the formation of IAA-protein complexes in the apex and roots, but not in the fully-expanded internodes.

Large quantities of a decarboxylation product of IAA, tentatively indentified as indole-3-aldehyde (IAld), and several minor metabolites of IAA, were detected in extracts of the roots and first internodes, but not in the above-ground organs exposed to light. These compounds were readily transported through stem and root tissues. Together, the decarboxylation of IAA and the formation of IAAsp operated to maintain a relatively constant level of free IAA-14C in the root system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, W. A., Good, N. E.: The formation of indoleacetylaspartic acid in pea seedlings. Plant Physiol. 30, 380–382 (1955).

    Google Scholar 

  • — Ysselstein, M. W. H. van: Studies on 3-indoleacetic acid metabolism III. The uptake of 3-indoleacetic acid by pea epicotyls and its conversion to 3-indoleacetylaspartic acid. Plant Physiol. 31, 235–240 (1956).

    Google Scholar 

  • —— Studies on 3-indoleacetic acid metabolism. V. Effect of calcium ions on 3-indoleacetic acid uptake and metabolism by pea roots. Plant Physiol. 35, 220–224 (1960).

    Google Scholar 

  • Armstrong, D. J.: Hypothesis concerning the mechanism of auxin action. Proc. nat. Acad. Sci. (Wash.) 56, 64–66 (1966).

    Google Scholar 

  • Barrier, G. E., Loomis, W. E.: Absorption and translocation of 2,4-dichlorophenoxy-acetic acid. Plant Physiol. 32, 225–231 (1957).

    Google Scholar 

  • Bendaña, F. E., Galston, A. W., Kaur-Sawhney, R., Penny, P. J.: Recovery of labelled ribonucleic acid following administration of labelled auxin to green pea stem sections. Plant Physiol. 40, 977–983 (1965).

    Google Scholar 

  • Ellman, G. L.: The biuret reaction: changes in the ultra violet spectra and its application to the determination of peptide bonds. Analyt. Biochem. 3, 40–48 (1962).

    Google Scholar 

  • Eschrich, W.: Translokation radioaktiv markierter Indolyl-3-Essigsäure in Siebröhren von Vicia faba. Planta (Berl.) 78, 144–157 (1968).

    Google Scholar 

  • Fang, S. S., Butts, J. S.: Studies of carboxyl-14C-labelled 3-indoleacetic acid in plants. Plant Physiol. 32, 253–259 (1957).

    Google Scholar 

  • Fischer, A.: Über die papierchromatographische und papierelektrophoretische Trennung von Indolederivaten. Planta (Berl.) 43, 288–314 (1954).

    Google Scholar 

  • Fletcher, R. A., Zalik, S.: Effects of light of several spectral bands on the metabolism of radioactive IAA in bean seedlings. Plant Physiol. 40, 549–522 (1965)

    Google Scholar 

  • Galston, A. W., Baker, R. S.: Studies on the physiology of light action. III. Light activation of a flavoprotein enzyme by reversal of the naturally occurring inhibition. Amer. J. Bot. 38, 190–195 (1951).

    Google Scholar 

  • Goldsmith, M. H. M.: Movement of pulses of labelled auxin in corn coleoptiles. Plant Physiol. 42, 258–263 (1967).

    Google Scholar 

  • — Separation of transit auxin from uptake: Average velocity and reversible inhibition by anaerobic conditions. Science 156, 661–663 (1967).

    Google Scholar 

  • —: The transport of auxin. Ann. Rev. Plant Physiol. 19, 347–360 (1968).

    Google Scholar 

  • Hayes, F. N.: Solutes and solvents for liquid scintillation counting. Tech. Bull. No. 1, Packard Instrument Co. Inc., Illinois 1963.

    Google Scholar 

  • Kirk, S. C., Jacobs, W. P.: Polar movement of indole-3-acetic acid-14C in roots of Lens and Phaseolus. Plant Physiol. 43, 675–682 (1968).

    Google Scholar 

  • Klämbt, H. D.: Indole-3-Acetylasparaginsäure, ein natürlich vorkommendes Indolderivat. Naturwissenschaften 47, 398 (1960).

    Google Scholar 

  • Lantican, B. P., Muir, R. M.: Auxin physiology of dwarfism in Pisum sativum. Physiol. Plantarum (Kbh.) 22, 412–423 (1969).

    Google Scholar 

  • Larsen, P.: Growth substances in higher plants. Modern methods of plant analysis, vol. III, p. 565–625 (K. Paech and M. V. Tracey, eds.). Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Little, E. C. S., Blackman, G. E.: The movement of growth regulators in plants III. Comparative studies of the transport in Phaseolus vulgaris. New Phytologist 62, 173–197 (1963).

    Google Scholar 

  • McCready, C. C.: The movement of growth regulators in plants. I. Polar transport of 2,4-dichlorophenoxyacetic acid in segments from the petioles of Phaseolus vulgaris. New Phytologist 62, 3–18 (1963).

    Google Scholar 

  • — Translocation of growth regulators. Ann. Rev. Plant Physiol. 17, 283–294 (1966).

    Google Scholar 

  • — Jacobs, W. P.: Movement of growth regulators in plants. II. Polar transport of radioactivity from indoleacetic acid-14C and 2,4-dichlorophenoxyacetic acid-14C in petioles of Phaseolus vulgaris. New Phytologist 62, 19–34 (1963).

    Google Scholar 

  • Morris, D. A., Thomas, E. E.: Distribution of 14C-labelled sucrose in seedlings of Pisum sativum L. treated with indoleacetic acid and kinetin. Planta (Berl.) 83, 276–281 (1968).

    Google Scholar 

  • Noodén, L., Thimann, K. V.: Evidence for a requirement for protein synthesis for auxin induced cell enlargement. Proc. nat. Acad. Sci. (Wash.) 50, 194–200 (1963).

    Google Scholar 

  • Patterson, B. D., Trewavas, A. J.: Changes in the pattern of protein synthesis induced by 3-indeolylacetic acid. Plant Physiol. 42, 1081–1086 (1967).

    Google Scholar 

  • Phillips, I. D. J.: Root-shoot hormone relations. I. The importance of an aerated root system in the regulation of growth hormone levels in the shoot of Helianthus annuus. Ann. Bot. 28, 17–25 (1964).

    Google Scholar 

  • — Root-shoot hormone relations. II. Changes in endogenous auxin concentration produced by flooding of the root system in Helianthus annuus. Ann. Bot. 28, 37–45 (1964).

    Google Scholar 

  • Pilet, P.-E.: Auxin transport in roots of Lens culinaris. Nature (Lond.) 204, 559–562 (1964).

    Google Scholar 

  • Racusen, D.: Formation of indole-3-aldehyde by indoleacetic oxidase. Arch. Biochem. Biopyhs. 58, 508–314 (1955).

    Google Scholar 

  • Rice, E. L.: Absorption and translocation of ammonium 2,4-dichlorophenoxyacetate by bean plants. Bot. Gaz. 109, 301–314 (1948).

    Google Scholar 

  • Rohrbaugh, L. M., Rice, E. L.: Effect of application of sugar on the translocation of sodium 2,4-D by bean plants in the dark. Bot. Gaz. 111, 85–89 (1949).

    Google Scholar 

  • Scott, T. K., Briggs, W. R.: Auxin relationships in the Alska pea. Amer. J. Bot. 47, 492–499 (1960).

    Google Scholar 

  • —— Recovery of native and applied auxin from the light-grown Alaska pea seedling. Amer. J. Bot. 49, 1056–1063 (1962).

    Google Scholar 

  • — Wilkins, M. B.: Auxin transport in roots. II. Polar flux of IAA in Zea roots. Planta (Berl.) 83, 323–334 (1968).

    Google Scholar 

  • Street, H. E.: The physiology of root growth. Ann. Rev. Plant Physiol. 17, 315–344 (1966).

    Google Scholar 

  • Tang, Y. W., Bonner, J.: The enzymic inactivation of indoleacetic acid I. Some characteristics of the enzyme contained in pea seedlings. Arch. Biochem. 13, 11–25 (1947).

    Google Scholar 

  • ——: The enzymic inactivation of indoleacetic acid II. The physiology of the enzyme. Amer. J. Bot. 35, 570–578 (1948).

    Google Scholar 

  • Thurman, D. A., Street, H. E.: Metabolism of some indole auxins in excised tomato roots. J. exp. Bot. 13, 369–377 (1962).

    Google Scholar 

  • Torrey, J. G.: The induction of lateral roots by indoleacetic acid and root decapitation. Amer. J. Bot. 37, 257–264 (1950).

    Google Scholar 

  • Wagenknecht, A. C., Burris, R. H.: IAA inactivating enzymes from bean roots and pea seedlings. Arch. Biochem. 25, 30–53 (1950).

    Google Scholar 

  • Weintraub, R. L., Brown, J. W.: Translocation of exogenous growth regulators in bean seedlings. Plant Physiol. 25, 140–149 (1950).

    Google Scholar 

  • Whitehouse, R. L., Zalik, S.: Translocation of indole-3-acetic acid-1′-14C and tryptophan-1-14C in seedlings of Phaseolus coccineus L. and Zea mays L. Plant Physiol. 42, 1363–1372 (1967).

    Google Scholar 

  • Wilkins, M. B., Scott, T. K.: Auxin transport in roots III. Dependence of the polar flux of IAA in Zea roots upon metabolism. Planta (Berl.) 83, 335–346 (1968).

    Google Scholar 

  • Winter, A., Thimann, K. V.: Bound indoleacetic acid in Avena coleoptiles. Plant Physiol. 41, 335–342 (1966).

    Google Scholar 

  • Zenk, M. H.: Isolation, biosynthesis and function of indoleacetic acid conjugates. Coloq. Reg. Nat. Croiss. Veg., p. 241–250, J. P. Nitsch, ed. Paris: C. N. R. S. 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, D.A., Briant, R.E. & Thomson, P.G. The transport and metabolism of 14C-labelled indoleacetic acid in intact pea seedlings. Planta 89, 178–197 (1969). https://doi.org/10.1007/BF00386984

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386984

Keywords

Navigation