Skip to main content
Log in

Indoleacetic-acid-enhanced chloride uptake into coleoptile cells

  • Published:
Planta Aims and scope Submit manuscript

Summary

The enhancement by indoleacetic acid (IAA) of 36Cl- uptake into Avena coleoptile sections was used to study the effects of a hormone on a membrane-controlled phenomenon. Compared to sections in phosphate buffer only, Cl- content of the cells increases 15 min after addition of IAA; the promotion is seen only with growth-active auxins and is saturated at 3 μM IAA. The percent enhancement by IAA is the same over a wide range of Cl- concentrations. The hormone effect is not observed at ice-bath temperature and is not correlated with growth or water movement into the cells. IAA does not influence the movement of Cl- in the section. While auxin must be present within the tissue in order to maintain the enhancement, there is no relationship between the total amount of auxin and the accelerated Cl- uptake that results. A polarity in the auxin effect is implied since only apical applications of IAA promote Cl- uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avery, G. S., Jr., Burkholder, P. R., Creighton, H. B.: Plant hormones and mineral nutrition. Proc. nat. Acad. Sci. (Wash.) 22, 673–678 (1936).

    Google Scholar 

  • Blackman, G. E.: Interrelationships between the uptake of 2,4-dichlorophenoxyacetic acid, growth, and ion absorption. In: The chemistry and mode of action of plant growth substances, Wain, R. L., Wightman, F. W., eds., p. 253–259. New York: Acad. Press 1956.

    Google Scholar 

  • Burström, H.: Studies on growth and metabolism of roots. IV. Positive and negative auxin effects on cell elongation. Physiol. Plantarum (Cph.) 3, 277–292 (1950).

    Google Scholar 

  • Cleland, R., Bonner, J.: The residual effect of auxin on the cell wall. Plant Physiol. 31, 350–354 (1956).

    Google Scholar 

  • Commoner, B., Mazia, D.: The mechanism of auxin action. Plant Physiol. 17, 682–685 (1942).

    Google Scholar 

  • dela Fuente, R. K., Leopold, A. C.: Time course of auxin stimulations of growth. Plant Physiol. 46, 186–189 (1970).

    Google Scholar 

  • Epstein, E.: Dual pattern of ion absorption by plant cells and by plants. Nature (Lond.) 212, 1324–1327 (1966).

    Google Scholar 

  • Eshel, A., Waisel, Y.: Variations in sodium uptake along primary roots of corn seedlings. Plant Physiol. 49, 585–589 (1972).

    Google Scholar 

  • Evans, M. L., Ray, P. M.: Timing of the auxin response in coleoptiles and its implications regarding auxin action. J. gen. Physiol. 53, 1–20 (1959).

    Google Scholar 

  • Goldsmith, M. H.: The transport of auxin. Ann. Rev. Plant Physiol. 19, 347–360 (1968).

    Google Scholar 

  • Goldsmith, M. H. M., Thimann, K. V.: Some characteristics of movement of indoleacetic acid in coleoptiles of Avena. I. Uptake, destruction, immobilization, and distribution of IAA during basipetal translocation. Plant Physiol. 37, 492–505 (1962).

    Google Scholar 

  • Hertel, R., Evans, M. L., Leopold, A. C., Sell, H. M.: The specificity of the auxin transport system. Planta (Berl.) 85, 238–248 (1969).

    Google Scholar 

  • Hertel, R., Leopold, A. C.: Versuche zur Analyse des Auxintransports in der Koleoptile von Zea mays L. Planta (Berl.) 59, 535–562 (1963).

    Google Scholar 

  • Higinbotham, N., Etherton, B., Foster, R. J.: Mineral ion contents and cell transmembrane electropotentials of pea and oat seedling tissue. Plant Physiol. 42, 37–46 (1967).

    Google Scholar 

  • Higinbotham, N., Graves, J. S., Davis, R. F.: Evidence for an electrogenic ion transport pump in cells of higher plants. J. Membrane Biol. 3, 210–222 (1970).

    Google Scholar 

  • Higinbotham, N., Latimer, H., Eppley, R.: Stimulation of rubidium absorption by auxins. Science 118, 243–245 (1953).

    Google Scholar 

  • Higinbotham, N., Pratt, M. J., Foster, R. J.: Effects of calcium, indoleacetic acid, and distance from stem apex on potassium and rubidium absorption by excised segments of etiolated pea epicotyl. Plant Physiol. 37, 203–214 (1962).

    Google Scholar 

  • Ilan, I.: A specific stimulatory action of indolyl-3-acetic acid on potassium uptake by plant cells, with a concomitant inhibition of ammonium uptake. Nature (Lond.) 194, 203–204 (1962).

    Google Scholar 

  • Ilan, I., Reinhold, L.: Analysis of the effects of indole-3-acetic acid on the uptake of monovalent cations. Physiol. Plantarum (Cph.) 16, 596–603 (1963).

    Google Scholar 

  • Jönsson, A.: Chemical structure and growth activity of auxins and antiauxins. Encycl. Plant. Physiol., vol. XIV, p. 959–1006, Ruhland, W., ed. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Jost, J.-P., Rickenberg, H. V.: Cyclic AMP. Ann. Rev. Biochem. 40, 741–774 (1971).

    Google Scholar 

  • Köhler, D.: Über den Zusammenhang zwischen Achsen- und Blattwachstum und Ionenaufnahme bei Keimlingen von Pisum sativum. Z. Pflanzenphysiol. 63, 185–193 (1970).

    Google Scholar 

  • Leopold, A. C.: Auxins and plant growth. Berkeley: Univ. of Calif. Press 1955.

    Google Scholar 

  • Lüttge, U., Bauer, K., Köhler, D.: Frühwirkungen von Gibberellinsäure auf Membrantransport in jungen Erbsenpflanzen. Biochim. biophys. Acta (Amst.) 150, 452–459 (1968).

    Google Scholar 

  • McRae, D. H., Bonner, J.: Chemical structure and antiauxin activity. Physiol. Plantarum (Cph.) 6, 485–510 (1953).

    Google Scholar 

  • Nance, J. F.: Inhibition of salt accumulation in excised wheat roots by 2,4-dichlorophenoxyacetic acid. Science 109, 174–176 (1949).

    Google Scholar 

  • Palmer, J. M.: The influence of growth regulating substances on the development of enhanced metabolic rates in thin slices of beet root storage tissue. Plant Physiol. 41, 1173–1178 (1966).

    Google Scholar 

  • Pickles, V. R., Sutcliffe, J. F.: The effects of 5-hydroxytryptamine, indole-3-acetic acid, and some other substances on pigment effusion, sodium uptake, and potassium efflux by slices of red beet root in vitro. Biochim. biophys. Acta (Amst.) 17, 244–251 (1955).

    Google Scholar 

  • Pierce, W., Higinbotham, N.: Compartments and fluxes of K, Na, and Cl in Avena coleoptile cells. Plant Physiol. 46, 666–673 (1970).

    Google Scholar 

  • Riggs, T. R.: Hormones and transport across cell membranes. In: Biochemical actions of hormones, vol. I, p. 157–208, Litwack, G., ed. New York: Acad. Press 1970.

    Google Scholar 

  • Scott, T. K., Briggs, W. R.: Auxin relationships in the Alaska pea (Pisum sativum). Amer. J. Bot. 47, 492–499 (1960).

    Google Scholar 

  • Skoog, F.: Relationships between zinc and auxin in the growth of higher plants. Amer. J. Bot. 27, 939–951 (1940).

    Google Scholar 

  • Smith, R.C., Epstein, R.: Ion absorption by shoot tissue: technique and first findings with excised leaf tissue of corn. Plant Physiol. 39, 338–341 (1964).

    Google Scholar 

  • Spanswick, R. M., Williams, E. J.: Electrical potentials and Na, K, and Cl concentrations in the vacuole and cytoplasm of Nitella translucens. J. exp. Bot. 15, 193–200 (1964).

    Google Scholar 

  • Steward, F. C., Mott, R. L.: Cells, solutes, and growth: salt accumulation in plants reexamined. Int. Rev. Cytol. 28, 275–370 (1970).

    PubMed  Google Scholar 

  • Went, F. W.: Transport of inorganic ions in polar plant tissues. Plant Physiol. 14, 365–369 (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinstein, B., Light, E.N. Indoleacetic-acid-enhanced chloride uptake into coleoptile cells. Planta 110, 43–56 (1973). https://doi.org/10.1007/BF00386921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386921

Keywords

Navigation