Skip to main content
Log in

Scale-invariant pattern in the alga Micrasterias

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Spatial structures arise in a variety of different physical, chemical and biological systems. A striking example is found during morphogenesis in the single-celled alga Micrasterias, where cell extensions called lobes branch repeatedly to produce a highly regular, apparently self-similar pattern. Lobe outgrowth in Micrasterias is thought to be controlled by the local accumulation of growth determinants at the lobe tips. These tip-growth sites undergo successive spatial bifurcations, leading to the recursively branched, final cell form. I have tested for scale invariance of this form, by measuring the distribution of tips as a function of position along the cell perimeter in mature Micrasterias cells of four different species. This tip distribution should reflect the steady-state distribution of growth determinants at the end of the spatial bifurcation process. For each cell measured, the distribution of tips resembled a Cantor set with three levels of constant, nested scaling. Significantly, roughly the same scale factor (∼3.0) was found at each scaling level in individual cells, and among different cells in each of the four species measured. These data suggest that scaling by this factor is intrinsic to the pattern formation process in Micrasterias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NittmannJ., DaccordG., and StanleyH. E., Nature 314 (1985), 141.

    Google Scholar 

  2. CilibertoS. and RubioM. A., Phys. Rev. Lett. 58 (1987), 2652.

    Google Scholar 

  3. LangerJ. S., Rev. Mod. Phys. 52 (1980), 1.

    Google Scholar 

  4. WinfreeA. T., Science 175 (1972), 634.

    Google Scholar 

  5. WelshB., GomatamJ., and BurgessA., Nature 304 (1983), 611.

    Google Scholar 

  6. MalacinskiG. M., Pattern Formation: A Primer in Developmental Biology, MacMillan, New York, 1984.

    Google Scholar 

  7. TuringA. M., Phil. Trans. R. Soc. Lond. B 237 (1952), 37.

    Google Scholar 

  8. MeinhardtH., Models of Biological Pattern Formation, New York, Academic Press, 1982.

    Google Scholar 

  9. SanderL. M., Nature 332 (1986), 789.

    Google Scholar 

  10. WolframS. Nature 311 (1984), 419.

    Google Scholar 

  11. KanekoK., Physica D 34 (1989), 1.

    Google Scholar 

  12. Pickett-HeapsJ. D., Green Algae: Structure, Reproduction and Evolution in Selected Genera, Sinauer, Sunderland, Ma., 1975, pp. 412–442.

    Google Scholar 

  13. Kiermayer, O., in Cell Biology Monographs, Vol. 8, Springer-Verlag, New York, pp. 147–189.

  14. PrescottG. W., CroasdaleH. T., and VinyardW. C., A Synopsis of North American Desmids, II. Desmidiaceae: Placodermae, Section 2, Univ. of Nebraska, Lincoln, 1977, pp. 266–389.

    Google Scholar 

  15. Waris, H. and Kallio, P., in M. Abercrombie and J. Bracket (eds.), Advances in Morphogenesis Vol. 4, Academic Press, New York, pp. 45–80.

  16. LacalliT. C., J. Embryol. Exp. Morph. 33 (1975), 95.

    Google Scholar 

  17. MeindlU., Protoplasma 110 (1982), 143.

    Google Scholar 

  18. McNallyJ. G., CowanJ. D., and SwiftH., Devl. Biol. 97 (1983), 137.

    Google Scholar 

  19. JaffeI. F., in R. A.Cone and J. E.Dowling (eds.), Membrane Transduction Mechanisms, Raven Press, New York, 1979, pp. 199–231.

    Google Scholar 

  20. LarterR. and OrtolevaP., J. Theor. Biol. 88 (1981), 599.

    Google Scholar 

  21. Ben-JacobE., GodbeyR., GoldenfeldN. D., KoplikJ., LevineH., MuellerT., and SanderL. M., Phys. Rev. Lett. 55 (1985), 1315.

    Google Scholar 

  22. AveryG. S., Amer. J. Bot. 20 (1933), 565.

    Google Scholar 

  23. KissF. A., Vascularization and Tissue Diffeentiation, Akad. Kiado, Budapest, 1975.

    Google Scholar 

  24. FeigenbaumM. J., J. Stat. Phys. 19 (1978), 25.

    Google Scholar 

  25. ColletP. and EckmannJ-P., Iterated Maps on the Interval as Dynamical Systems, Birkhauser, Boston, 1980.

    Google Scholar 

  26. KeenerJ. P., Stud. Appl. Math. 55 (1976), 187.

    Google Scholar 

  27. KaiS., MullerS. C., and RossJ., J. Phys. Chem. 87 (1983), 806.

    Google Scholar 

  28. HarrisonL. G. and LacalliT. C., Proc. Roy. Soc. Lond. B. 202 (1978), 361.

    Google Scholar 

  29. CrutchfieldJ. P. and KanekoK., Phenomenology of spatiotemporal chaos, in Directions in Chaos, World Scientific, Singapore, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNally, J.G. Scale-invariant pattern in the alga Micrasterias . J Biol Phys 17, 235–243 (1990). https://doi.org/10.1007/BF00386599

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386599

Key words

Navigation