Skip to main content
Log in

Effects of low water potentials on respiration and on glucose and acetate uptake, by Chlorella pyrenoidosa

  • Published:
Planta Aims and scope Submit manuscript

Summary

Chlorella pyrenoidosa was subjected to a range of water potentials and the effects of these treatments on endogenous respiration and on the uptake and respiration of glucose and acetate were measured.

For a given water potential the reductions were greatest for glucose, less for acetate, and least for endogenous respiration. At intermediate water potentials of about-10 atm, glucose respiration was depressed strongly at first, but this respiration approached control levels after two to three hours at low water potentials.

The reduced respiration of substrates was caused by inhibition of glucose and acetate uptake, as demonstrated by 14C uptake experiments over short periods. These effects on uptake are attributed to low water potentials, rather than to any possible competition between the molecules of the osmotica and the substrates. Evidence for this view includes the equal inhibitions of “glucose-induced” respiration by osmotica with such diverse molecular structure as mannitol, KCl, and polyethylene glycol 1540. More conclusively, glucose itself was used as an osmotic agent and its inhibition of “glucose-induced” respiration was very similar to that by mannitol solutions of equal water potentials.

Respiratory activity was much less reduced than uptake. This was demonstrated by lowering the water potential of cells which had already absorbed glucose from a control medium. The subsequent respiration was much higher than that for cells continuously exposed to low water potential.

The findings are discussed in relation to the reduced transport of ions and sucrose, which is known to occur in vascular plants subjected to a water stress.

The results demonstrate the advantages of using a unicellular organism in the study of metabolic effects of water deficits in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennet-Clark, T. A., and D. Bexon: Water relations of plant cells. III. The respiration of plasmolysed tissues. New Phytol. 42, 65–92 (1943).

    Google Scholar 

  • Brix, H.: The effect of water stress on the rates of photosynthesis and respiration in tomato plants and loblolly pine seedlings. Physiol. Plantarum (Copenh.) 15, 10–20 (1962).

    Google Scholar 

  • Dainty, J., and A. B. Hope: The water permeability of cells of Chara Australis R. Br.. Aust. J. biol. Sci. 12, 136–145 (1959).

    Google Scholar 

  • Füchtbauer, W.: Trockenresistenzsteigerung nach osmotischer Adaptation bei Saccharomyces und Chlorella. Arch. Mikrobiol. 26, 209–230 (1957).

    Google Scholar 

  • Gates, C. T.: The response of the young tomato plant to a brief period of water-shortage III. Drifts in nitrogen and phosphorus. Aust. J. Biol. Sci. 10, 125–146 (1957).

    Google Scholar 

  • Husain, I.: Water stress and apical morphogenesis in barley and Lolium temulentum L. Ph. D. Thesis University of Adelaide, Adelaide, S.A. 1967.

  • Kozlowski, T. T.: Water metabolism in plants. New York: Harper and Row 1964.

    Google Scholar 

  • Lambertz, P.: Untersuchungen über das Vorkommen von Plasmadesmen in den Epidermisaußenwänden. Planta (Berl.) 44, 147–190 (1954).

    Google Scholar 

  • Levitt, J.: Frost, drought, and heat resistance. In: Protoplasmatologia, vol. III, p. 6. Wien: Springer 1958.

    Google Scholar 

  • Linser, H., H. H. Mayr, und C. Chwala: Der Einfluß des osmotischen Drucks einer Nährlösung auf die Phosphoraufnahme durch Wurzeln von Lycopersicon esculentum. Atompraxis 8, 4–6 (1962).

    Google Scholar 

  • Manohar, M. S.: Effect of “osmotic” systems on germination of peas (Pisum sativum). Planta (Berl.) 71, 81–86 (1966).

    Google Scholar 

  • Marschner, H., M. C. Saxena, u. G. Michael: Aufnahme von Phosphat durch Gerstenkeimpflanzen in Abhängigkeit vom osmotischen Druck der Nährlösung Z. Pflanzenernähr. Düng. Bodenk. 105, 82–94 (1965).

    Google Scholar 

  • Mothes, K.: Der Einfluß des Wasserzustandes auf Fermentprozesse und Stoffumsatz. In: Handbuch der Pflanzenphysiologie, Bd. III, S. 656–664, herausgeg. v. H. Burström. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Ordin, L.: Effect of water stress on cell wall metabolism of Avena coleoptile tissue. Plant Physiol. 35, 443–450 (1960).

    Google Scholar 

  • Plaut, Z., and Leonora Reinhold: The effect of water stress on [14C] sucrose transport in bean plants. Aust. J. biol. Sci. 18, 1143–1155 (1965).

    Google Scholar 

  • Ried, A., u. C. J. Soeder: Wirkungen erhöhter Salzkonzentration auf den Gaswechsel synchron kultivierter Chlorella pyrenoidosa. Naturwissenschaften 48, 106–107 (1961).

    Google Scholar 

  • Spanner, D. C.: The Peltier effect and its use in measurement of suction pressure. J. exp. Bot. 2, 145–168 (1951).

    Google Scholar 

  • Stocker, O.: Die Dürreresistenz. In: Handbuch der Pflanzenphysiologie, Bd. III, S. 696–741, herausgeg. von H. Burström. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Treboux, O.: Einige stoffliche Einflüsse auf die Kohlensäureassimilation bei submersen. Pflanzen. Flora (Jena) 92, 49–76 (1903).

    Google Scholar 

  • Walter, H.: Die Bedeutung des Wassersättigungszustandes für die CO2-Assimilation der Pflanzen. Ber. dtsch. bot. Ges. 46, 530–539 (1928).

    Google Scholar 

  • Wardlaw, I. F.: The effect of water stress on translocation in relation to photosynthesis and growth. I. Effect during grain development in wheat. Aust. J. biol. Sci. 20, 25–40 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenway, H., Hiller, R.G. Effects of low water potentials on respiration and on glucose and acetate uptake, by Chlorella pyrenoidosa . Planta 75, 253–274 (1967). https://doi.org/10.1007/BF00386325

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386325

Keywords

Navigation