Skip to main content
Log in

The theory of a vibrating-rod densimeter

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B, C, D :

constants in equation (60)

A j , B j :

constants in equation (18)

a +j , a j :

wavenumbers given by equation (19)

C f :

drag coefficient defined in equation (64)

C /0 f , C /1 f :

components of C f in series expansion in powers of ε

c :

speed of sound

D b :

drag force of fluid b

D 0 :

coefficient of internal damping

E :

extensional modulus

\(F,\tilde F\) :

force per unit length

F +j , F j :

constants in equation (24)

f, g :

functions of σ defined in equations (56)

G :

modulus of rigidity

I :

second moment of area

K :

constant in equation (90)

k, k′ :

constants defined in equations (9)

L :

half-length of oscillator

Ma :

Mach number

m a :

mass per unit length of fluid a

m b :

added mass per unit length of fluid b

m s :

mass per unit length of solid

n j :

eigenvalue defined in equation (17)

P :

power (energy per cycle)

P a , P b :

power in fluids a and b

p :

pressure

R :

radius of rod or outer radius of tube

R c :

radius of container

R i :

inner radius of tube

r :

radial coordinate

T :

tension

T visc :

temperature rise due to heat generation by viscous dissipation

t :

time

v r , v θ :

radial and angular velocity components

y :

lateral displacement

z :

axial coordinate

α :

dimensionless tension

β a :

dimensionless mass of fluid a

β b :

dimensionless added mass of fluid b

β′ b :

dimensionless drag of fluid b

γ :

dimensionless parameter associated with λ

Δ0 :

dimensionless coefficient of internal damping

\(\Delta \tilde \omega \) :

dimensionless half-width of resonance curve

\(\Delta \tilde \omega _r \) :

dimensionless frequency difference defined in equation (87)

δ :

spatial resolution of amplitude

δR, δμ, δρ, δρ s , δω:

increments in R, μ, ρ, ρ s , ω

ε :

dimensionless amplitude of oscillation

ζ :

dimensionless axial coordinate

η :

ratio of \(\tilde \omega _0 \) to \(\tilde \omega _r \)

η a , η b :

ratios of \(\tilde \omega _0 \) to \(\tilde \omega _r \) for fluids a and b

θ :

angular coordinate

λ:

parameter arising from distortion of initially plane cross-sections

λ f :

thermal conductivity of fluid

Λ:

dimensionless parameter associated with λ

μ :

viscosity of fluid

μ a , μ b :

viscosity of fluids a and b

ξ :

dimensionless displacement

ξ j :

jth component of ξ

ρ :

density of fluid

ρ a , ρ b :

density of fluids a and b

ρ s :

density of tube or rod material

ρ′ :

density of fluid calculated on assumption that σ* → ∞

σ :

dimensionless radial coordinate

σ*:

dimensionless radius of container

\(\tau ,\tilde \tau \) :

dimensionless times

τ rr τrr, τ :

radial normal and shear stress components

φ :

spatial component of ξ defined in equation (13)

φ j :

jth component of φ

Φ:

dimensionless streamfunction

Φ0, Φ1 :

components of Φ in series expansion in powers of ε

χ:

phase angle

χ r :

phase difference

χ ra , χ rb :

phase difference for fluids a and b

Ψ:

streamfunction

Ψ j :

jth component defined in equation (22)

Ω:

dimensionless frequency (based on ρ)

Ω a , Ω b :

dimensionless frequency in fluids a and b

Ω s :

dimensionless frequency (based on ρ s )

ω :

angular frequency

ω 0 :

resonant frequency in absence of fluid and internal damping

ω r :

resonant frequency in absence of internal fluid

ω ra , ω rb :

resonant frequencies in fluids a and b

\(\tilde \omega \) :

dimensionless frequency

\(\tilde \omega _r \) :

dimensionless frequency when β a vanishes

\(\tilde \omega _{ra} ,\tilde \omega _{rb} \) :

dimensionless frequencies when β a vanishes in fluids a and b

\(\tilde \omega _0 \) :

dimensionless resonant frequency when β a , βb, β′b and Δ0 vanish

\(\tilde \omega _1 \) :

dimensionless resonant frequency when β a , βb and β′ b vanish

\(\tilde \omega _2 \) :

dimensionless resonant frequency when β b and β′ b vanish

\(\tilde \omega _ + ,\tilde \omega _ - \) :

dimensionless frequencies at which amplitude is half that at resonance

References

  1. J. Kestin, In: D.T. Richard and F.E. Wickman (eds) Chemistry and Geochemistry of Solutions at High Temperatures and Pressures. Pergamon, New York (1981).

    Google Scholar 

  2. J. Kestin and W. Leidenfrost, Physics 25 (1959) 1033.

    Google Scholar 

  3. K. Torklep and H.A. Dye, J. Phys. E.: Sci. Instrum 12 (1979) 875.

    Google Scholar 

  4. J.M. Grouvel, J. Kestin, H.E. Khalifa, E.U. Franck and F. Hersel, Ber Bunsenges. Phys. Chem. 79 (1975) 889.

    Google Scholar 

  5. O. Kratky, H. Leopold and H. Stabinger, Z. Angew. Phys. 27 (1969) 273.

    Google Scholar 

  6. H.J. Albert and R.H. Wood, Rev. Sci. Instrum. 55 (1984) 589.

    Google Scholar 

  7. J.M. Grouvel and J. Kestin, Appl. Sci. Res. 34 (1979) 427.

    Google Scholar 

  8. J.T. Tough, W.D. McCormick and J.G. Dash, Rev. Sci. Instrum. 35 (1964) 1345.

    Google Scholar 

  9. E. Charles, J. Molenat, H. Abachi, J. Michel and P. Malbrunot, J. Phys. E: Sci. Instrum. 13 (1980) 829.

    Google Scholar 

  10. L. Bruschi and M. Santini, Rev. Sci. Instrum. 46 (1975) 1560.

    Google Scholar 

  11. J.T.R. Watson, National Engineering Laboratory Report No. 473 (N.E.L., East Kilbride, 1970).

    Google Scholar 

  12. S.P. Timoshenko, D.H. Young and W. Weaver, Jr. Vibration Problems in Engineering, 4th edn, Wiley, New York (1974).

    Google Scholar 

  13. D. Ramkrishna and N.R. Amundson, Linear Operator Methods in Chemical Engineering, 1st edn, Prentice Hall, Englewood Cliffs NJ (1985).

    Google Scholar 

  14. G.K. Batchelor, An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge University Press, Cambridge (1967).

    Google Scholar 

  15. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York (1965) chapter 9.

    Google Scholar 

  16. S.S. Chen, M.W. Wambsganss and J.A. Jendrzejczyk, Trans. A.S.M.E., J. Appl. Mech. 43 (1976) 325.

    Google Scholar 

  17. M. Van Dyke, An Album of Fluid Motion. Parabolic Press, Stanford (1982).

    Google Scholar 

  18. G.G. Stokes, Mathematical and Physical Papers III, 1, Cambridge University Press, Cambridge (1901).

    Google Scholar 

  19. J.R.A. Pearson, Polymer Eng. Science 18 (1978) 222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Retsina, T., Richardson, S.M. & Wakeham, W.A. The theory of a vibrating-rod densimeter. Appl. Sci. Res. 43, 127–158 (1986). https://doi.org/10.1007/BF00386040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386040

Keywords

Navigation