Skip to main content
Log in

Structure granaire, réduction du NADP et photophosphorylation des chloroplastes isolés de feuilles d'orge

Grana structure, NADP reduction and photophosphorylation of isolated barley chloroplasts

  • Published:
Planta Aims and scope Submit manuscript

Summary

Barley chloroplasts (Hordeum vulgare L.) have been isolated in aqueous medium by previously described techniques which preserve the outer plastid membrane in numerous chloroplasts. Thus “intact” chloroplasts are concentrated in “Class I” fraction and “non intact” in “Class II” fraction. A third type, “broken Class I”, is obtained by the action of a very dilute buffer solution.

The observation of freeze-etched preparations has shown that the main distinctive character between the two classes is not so much the presence or the absence of the outer plastid membrane, as it was assumed, as the state of the thylakoids. In Class I chloroplasts grana are shrunken, in those of Class II, grana are swollen. In both cases the outer membrane may or may not be preserved.

The breakage of chloroplasts resulting from treatment with osmotic shocks is due to the dilatation of the extra-lamellar matrix. The swelling of intra-thylakoidal volumes resulting from such a treatment is much less important.

It is shown that Class I chloroplasts have a very low NADP reductase activity which is strongly increased after the chloroplasts are broken by osmotic shocks. Such a treatment is without any effect on Class II chloroplasts, which always exhibit a low NADP reductase activity.

The situation is rather different in regard to photophosphorylation. It is also lower in Class II than in Class I, but after breakage by osmotic shocks the increase of this activity is weak, and much less significant than the increase observed in NADP reduction. The compression and cohesion of the thylakoids is not required for high photophosphorylation activity with artificial electron acceptors such as PMS. In this case cyclic photophosphorylation is higher in Class II than in Class I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP, ATP:

adénosine di et triphosphate

EDTA:

éthylène diamine trétaacétate

NAD, NADP, NADPH2 :

nicotinamide adénine dinucléotide, d° phosphate (formes oxydée et réduite)

PMS:

phénazine méthosulfate

Pi:

phosphate inorganique

Bibliographie

  • Arnon, D. I.: Micro-elements in culture solution experiments with higher plants. Amer. J. Bot. 25, 322–325 (1938).

    Google Scholar 

  • —: Copper enzymes in isolated chloroplasts. Plant Physiol. 24, 1–15 (1949).

    Google Scholar 

  • —, M. Losada, F. R. Whatley, H. Y. Tsujimoto, D. O. Hall, and A. A. Horton: Photosynthetic phosphorylation and molecular oxygen. Proc. nat. Acad. Sci. (Wash.) 47, 1314–1340 (1961).

    Google Scholar 

  • —, F. R. Whatley, and M. B. Allen: Photosynthesis by isolated chloroplasts. VIII. Photosynthetic phosphorylation and the generation of assimilatory power. Biochim. biophys. Acta (Amst.) 32, 47–57 (1959).

    Article  Google Scholar 

  • Avron, M.: Photophosphorylation by swiss-chard chloroplasts. Biochim. biophys. Acta (Amst.) 40, 252–272 (1960).

    Article  Google Scholar 

  • Davenport, H. E., and R. Hill: A protein from leaves catalysing the reduction of heam-protein compounds by illuminated chloroplasts. Biochem. J. 74, 493–501 (1960).

    PubMed  Google Scholar 

  • Deamer, D. W., A. R. Crofts, and L. Packer: Mechanisms of light-induced structural changes in chloroplasts. I. Light-scattering increments and ultrastructural changes mediated by proton transport. Biochim. biophys. Acta (Amst.) 131, 81–96 (1967).

    Google Scholar 

  • Dilley, R. A., R. B., Park, and D. Branton: Ultrastructural studies of the light-induced chloroplast shrinkage. Photochem. Photobiol. 6, 407–412 (1967).

    Google Scholar 

  • —, and L. P. Vernon: Changes in light-absorption and light-scattering properties of spinach chloroplasts upon illumination: relationship to photophosphorylation. Biochemistry 3, 817–824 (1964).

    Google Scholar 

  • Hongladarom, T., and S. I. Honda: Reversible swelling and contraction of isolated spinach chloroplasts. Plant Physiol. 41, 1686–1694 (1966).

    Google Scholar 

  • Jensen, R. G., and J. A. Bassham: Photosynthesis by isolated chloroplasts. Proc. nat. Acad. Sci. (Wash.) 56, 1095–1101 (1966).

    Google Scholar 

  • Kushida, H., M. Itoh, S. Izawa, and K. Shibata: Deformation of chloroplasts on illumination in intact spinach leaves. Biochim. biophys. Acta (Amst.) 79, 201–203 (1964).

    Google Scholar 

  • Leech, R. M.: The isolation of structurally intact chloroplasts. Biochim. biophys. Acta (Amst.) 79, 637–639 (1964).

    Google Scholar 

  • Lison, L.: Histochimie et Cytochimie animale, vol. II, 3° éd., p. 600. Paris: Gauthier-Villars 1960.

    Google Scholar 

  • Lynn, W. S., and R. H. Brown: P/2e- ratios approaching 4 in isolated chloroplasts. J. biol. Chem. 242, 412–417 (1967).

    PubMed  Google Scholar 

  • Mathieu, Y.: Sur l'isolement, en milieu aqueux, de chloroplastes «intacts» à partir de feuilles de plantules d'Orge. Photosynthetica, sous presse (1967).

  • McCarty, R. E., and A. T. Jagendorf: Chloroplast damage due to enzymatic hydrolysis of endogenous lipids. Plant Physiol. 40, 725–735 (1965).

    PubMed  Google Scholar 

  • Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445–502 (1966).

    Article  PubMed  Google Scholar 

  • Moor, H.: Die Gefrier-Fixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie. Z. Zellforsch. 62, 546–580 (1964).

    PubMed  Google Scholar 

  • Moyse, A.: L'assimilation de CO2 par les préparations de chloroplastes isolés. Examen critique de ses facteurs limitants. In: Vol. dédié à la mémoire de N. M. Sissakian, Acad. Sci. URSS éd., 1968.

  • Nobel, P. S.: Relation of swelling and photophosphorylation to light-induced ion uptake by chloroplasts in vitro. Biochim. biophys. Acta (Amst.) 131, 127–140 (1967).

    Google Scholar 

  • Packer, L.: Volume changes and contractility of mitochondrial and chloroplast membranes. Ann. N.Y. Acad. Sci. 137, 624–640 (1966).

    PubMed  Google Scholar 

  • —, A. C. Barnard, and D. W. Deamer: Ultrastructural and photometric evidence for light-induced changes in chloroplast structure in vivo. Plant Physiol. 42, 283–293 (1967).

    Google Scholar 

  • Shavit, N., and M. Avron: The relation of electron transport and photophosphorylation to conformational changes in chloroplasts. Biochim. biophys. Acta (Amst.) 131, 516–525 (1967).

    Google Scholar 

  • Spencer, D., and H. Unt: Biochemical and structural correlations in isolated spinach chloroplasts under isotonic and hypotonic conditions. Aust. J. biol. Sci. 18, 197–210 (1965).

    Google Scholar 

  • Walker, D. A.: Correlation between photosynthetic activity and membrane integrity in isolated pea chloroplasts. Plant Physiol. 40, 1157–1161 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourdu, R., Mathieu, Y., Miginiac-Maslow, M. et al. Structure granaire, réduction du NADP et photophosphorylation des chloroplastes isolés de feuilles d'orge. Planta 80, 191–210 (1968). https://doi.org/10.1007/BF00385595

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385595

Navigation