Skip to main content
Log in

Die Zinkaufnahme in das Innere von Chlorella

The uptake of zinc into the interior of Chlorella

  • Published:
Planta Aims and scope Submit manuscript

Summary

The uptake of labelled Zn by asynchronous Chlorella fusca was measured under conditions of optimum and minimum energy supply (light and air, or dark and nitrogen, respectively). Part of the Zn equilibrates rapidly with the medium, and soon after the uptake it can be washed out quickly with non-labelled Zn carrier solution; it is probably bound in the free space (cell wall). This component of the uptake is also observed with cells kept in minimum conditions, with dead cells and with isolated cell wall material.

Under optimum conditions Zn is taken up strongly for long periods and cannot be washed out completely. The velocity of uptake depends on the Zn content of the cells, and follows saturation kinetics. The uptake has no influence on the efflux of preabsorbed Rb. The retained Zn is thought to be inside the cells. It may enter by way of a pump. However, an energy-independent path of entry, with a differnt temperature coefficient, is also observed. All uptake processes are influenced by Ca.

Part of the labelled Zn is slowly removed from the interior of the cell on treatment with a solution of carrier Zn or EDTA. This loss does not depend on energy supply and may occur via the second pathway. Net loss of labelled Zn is also observed after the energy supply is turned off, without change of solution, but the loss can be compensated by a simultaneous increase in the external concentration of labelled Zn. The question is discussed whether the energy-dependent Zn uptake is an “active” process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Barber, J.: The efflux of potassium from Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 163, 531–538 (1968a).

    Google Scholar 

  • —: Light-induced uptake of potassium and chloride by Chlorella pyrenoidosa. Nature (Lond.) 217, 876–878 (1968b).

    Google Scholar 

  • —: Measurement of the membrane potential and evidence for the active transport of ions in Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 150, 618–625 (1968c).

    Google Scholar 

  • Broda, E.: The uptake of some heavy trace elements by Chlorella. In: Stofftransport und Stoffverteilung in Zellen höherer Pflanzen (Hrsg. K. Mothes et al.), p. 109–116. Berlin: Akademie-Verlag 1968.

    Google Scholar 

  • —, Springer-Lederer, H., Findenegg, G. R., Paschinger, H.: Passive und aktive Komponenten der Anreicherung von Ionen durch Chlorellaalgen. Ber. Bunsen-Ges. physik. Chem. 71, 891–893 (1967).

    Google Scholar 

  • Coombs, J., Whittingham, C. P.: The effect of high partial pressures of oxygen on photosynthesis in Chlorella. Phytochemistry 5, 643–651 (1966).

    Google Scholar 

  • Findenegg, G. R.: Aktive und passive Aufnahme von Spurenelementen durch Chlorella. Diss. Wien 1968.

  • —, Broda, E.: Stoffwechselabhängige Aufnahme von Zink durch Chlorella. Naturwissenschaften 53, 358–359 (1966).

    Google Scholar 

  • —, Springer-Lederer, H.: Apparat zur laufenden Gewinnung von Chlorella-Algen für chemische Untersuchungen. Allg. prakt. Chem. 18, 279–280 (1967).

    Google Scholar 

  • Fried, M., Broeshart, H.: The soil-plant system, p. 92. New York: Academic Press 1967.

    Google Scholar 

  • Fuhrmann, G. F., Rothestein, A.: The transport of Zn, Co and Ni into yeast cells. Biochim. biophys. Acta (Amst.) 163, 325–330 (1968).

    Google Scholar 

  • Gibbs, M.: Fermentation. In: R. Lewin (Hsg.), Physiology and biochemistry of algae, p. 91–97. New York: Academic Press 1962.

    Google Scholar 

  • Goldman, D., Schultz, S. G., Epstein, W.: Repressive control of potassium transport in E. coli. Biochim. biophys. Acta (Amst.) 130, 546–548 (1966).

    Google Scholar 

  • Krausz, H., Broda, E.: Aurnahme von Spurenelementen durch Ionenaustausch in Pflanzenzellen. Mh. Chem. 96, 695–705 (1965).

    Google Scholar 

  • Matzku, S.: Untersuchungen über den Mechanismus der Aufnahme von markiertem Zink durch Chlorella. Diss. Wien 1969.

  • Northcote, D. H.: Plant cell surfaces. In: The structure and function of the membranes and surfaces of cells. Biochem. Soc. Symp. 22, 105–113 (1962).

  • —, Goulding, K. J., Horne, R. W.: Chemical composition and structure of the cell wall of Chlorella pyrenoidosa. Biochem. J. 70, 391–397 (1958).

    Google Scholar 

  • Punnett, T., Derrenbacker, E. C.: The amino acid composition of algal cell walls. J. gen. Microbiol 44, 105–114 (1966).

    Google Scholar 

  • Robinson, R. A., Stokes, R. H.: Electrolyte solutions, p. 126. London: Butterworth 1959.

    Google Scholar 

  • Ruppel, H. G.: Untersuchungen über die Zusammensetzung von Chlorella bei Synchronisation im Licht-Dunkel-Wechsel. Flora (Jena) 152, 113–138 (1962)

    Google Scholar 

  • Schuster, I., Broda, E.: Die Bindung von Zink durch Zellwände von Chlorella. Mh. Chem. 101, 285–295 (1970).

    Google Scholar 

  • Springer-Lederer, H., Rosenfeld, D. L.: Energy sources for the absorption of rubidium by Chlorella. Physiol. Plantarum 21, 435–444 (1968).

    Google Scholar 

  • Vallée, M., Jeanjean, R.: Le système de transport de SO4 2- chez Chlorella pyrenoidosa et sa régulation. Biochim. biophys. Acta (Amst.) 150, 599–606 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzku, S., Broda, E. Die Zinkaufnahme in das Innere von Chlorella . Planta 92, 29–40 (1970). https://doi.org/10.1007/BF00385560

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385560

Navigation