Skip to main content
Log in

Intracellular localization of the active process in polar transport of auxin

  • Published:
Planta Aims and scope Submit manuscript

Summary

The cytoplasm of maize coleoptile cells was displaced to either the apical or basal ends of the cells by centrifuging (1750xg for 10 min) segments in which protoplasmic streaming had been stopped by pretreatment with cytochalasin B. Centrifugation toward the base of the segment promotes the subsequent basipetal transport of indole-3-acetic acid, whereas apical centrifugation dramatically inhibits this transport. Apical centrifugation neither promotes acropetal transport nor reverses the polarity of auxin transport. Experiments in which the amyloplasts were separated from the bulk of the cytoplasm indicate that the basipetal transport is independent of both the position and pressure exerted by the amyloplasts but is strongly dependent on the amount of cytoplasm at the basal end of the cells. These effects of centrifugation on auxin transport lead to the conclusion that the metabolic component of the transport is a polar secretion of auxin localized in the basal plasma membrane of each cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brueske, C. H., Applegate, H. G.: The roles of adenosine triphosphate and glutathione in the inhibition of cyclosis by p-chlorobenzoic acid in Elodea densa. New Phytologist 65, 44–49 (1966).

    Google Scholar 

  • Cande, W. Z.: Studies of auxin action and transport. Ph. D. Diss., Stanford Univ. (1972).

  • Cande, W. Z., Goldsmith, M. H. M., Ray, P. M.: Polar auxin transport and auxin-induced elongation in the absence of cytoplasmic streaming. Planta (Berl.) 111, 279–296 (1966).

    Google Scholar 

  • Christie, A. E., Leopold, A. C.: On the manner of triiodobenzoic acid inhibition of auxin transport. Plant Cell Physiol. 6, 337–345 (1965a).

    Google Scholar 

  • Christie, A. E., Leopold, A. C.: Entry and exit of indoleacetic acid in corn coleoptiles. Plant Cell Physiol. 6, 453–465 (1965b).

    Google Scholar 

  • de la Fuente, R. K., Leopold, A. C.: Kinetics of polar auxin transport. Plant Physiol. 41, 1481–1484 (1966).

    Google Scholar 

  • Filner, B., Hertel, R., Steele, C., Fan, V.: Some aspects of geotropism in coleoptiles. Planta (Berl.) 94, 333–354 (1970).

    Google Scholar 

  • Goldsmith, M. H. M.: Movement of indoleacetic acid in coleoptiles of Avena sativa L. II. Suspension of polarity by total inhibition of the basipetal transport. Plant Physiol. 41, 15–27 (1966a).

    Google Scholar 

  • Goldsmith, M. H. M.: Maintenance of polarity of auxin movement by basipetal transport. Plant Physiol. 41, 749–754 (1966b).

    Google Scholar 

  • Goldsmith, M. H. M.: Movement of pulses of labeled auxin in corn coleoptiles. Plant Physiol. 42, 258–263 (1967).

    Google Scholar 

  • Goldsmith, M. H. H.: Transport of plant growth regulators. In: Physiology of plant growth and development, p. 125–162, M. B. Wilkins, ed. London: McGraw-Hill 1969.

    Google Scholar 

  • Hager, A., Menzel, H., Krauss, A.: Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta (Berl.) 100, 47–75 (1971).

    Google Scholar 

  • Hertel, R., Leopold, A. C.: Versuche zur Analyse des Auxintransports in der Koleoptile von Zea mays L. Planta (Berl.) 59, 535–562 (1963).

    Google Scholar 

  • Leopold, A. C., Hall, O. F.: Mathematical model of polar auxin transport. Plant Physiol. 41, 1476–1480 (1966).

    Google Scholar 

  • Little, C. H. A., Goldsmith, M. H. M.: Effect of inversion on growth and movement of indole-3-acetic acid in coleoptiles. Plant Physiol. 42, 1239–1245 (1967).

    Google Scholar 

  • McCready, C. C.: The polarity of auxin movement in segments excised from petioles of Phaseolus vulgaris L. In: Biochemistry and physiology of plant growth substances, p. 1005–1023, Wightman, F., Setterfield, G. eds. Ottawa: Runge Press 1968.

    Google Scholar 

  • Naqvi, S. M., Gordon, S. A.: Auxin transport in Zea mays L. coleoptiles. I. Influence of gravity on the transport of indoleacetic acid-2-14C. Plant Physiol. 41, 1113–1118 (1966).

    Google Scholar 

  • Ouitrakul, R., Hertel, R.: Effect of gravity and centrifugal acceleration on auxin transport in corn coleoptiles. Planta (Berl.) 88, 233–243 (1969).

    Google Scholar 

  • Pop, E., Soran, V., Lazar, G.: The effect of ATP (disodium salt) upon rotational streaming. Physiol. Plantarum (Cph.) 20, 617–623 (1967).

    Google Scholar 

  • Reiff, B., Guttenberg, H. v.: Der polare Wuchsstofftransport von Helianthus annuus in seiner Abhängigkeit von Alter, Quellungszustand und Kohlenhydratversorgung des Gewebes. Flora 151, 44–72 (1961).

    Google Scholar 

  • Seitz, K.: Die Ursache der Phototaxis der Chloroplasten: ein ATP-Gradient? Z. Pflanzenphys. 64, 241–256 (1971).

    Google Scholar 

  • Sovonick, S. A., Geiger, D. R.: The role of source leaf metabolism in sucrose translocation in sugar beet. Plant Physiol. 47 (Suppl.) 40 (1971).

    Google Scholar 

  • Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., Yamada, K. M.: Microfilaments in cellular and developmental processes. Science 171, 135–143 (1971).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsmith, M.H.M., Ray, P.M. Intracellular localization of the active process in polar transport of auxin. Planta 111, 297–314 (1973). https://doi.org/10.1007/BF00385549

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385549

Keywords

Navigation