Skip to main content
Log in

Glutamate dehydrogenase from Pisum sativum L.

Localization of the multiple forms and of glutamate formation in isolated mitochondria

  • Published:
Planta Aims and scope Submit manuscript

Abstract

A 2–8-fold increase in the activity of glutamate dehydrogenase (GDH), accompanied by an alteration of the GDH isoenzyme pattern, was observed in detached pea shoots floated on tap water (preincubated shoots). Sugars supressed the process, whereas NH 4+ and various metabolites as well as inhibitors of energy metabolism and protein synthesis were ineffective. The subcellular distribution pattern revealed evidence that the GDH isoenzymes are exclusively located in the mitochondrial matrix. The alterations in GDH activity occurring in preincubated shoots are restricted to the mitochondria.

An experimental device suitable for studying the GDH function in isolated intact mitochondria has been established. Using [14C] citrate as the carbon source and hydrogen donor, the mitochondria synthesized considerable amounts of glutamate upon addition of NH 4+ . The rates of glutamate formation in dependency of increasing NH 4+ levels follow simple Michaelis-Menten kinetics. Half-saturation concentrations of NH 4+ of 3.6±1.2 mM; 1.9±0.06 mM and 1.6±0.1 mM were calculated for the mitochondria isolated from pea shoots, roots, and preincubated shoots, respectively. The results are discussed in relation to the possible role of GDH in NH+/4 assimilation at elevated intracellular NH+/4 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GDH:

Glutamate dehydrogenase

MDH:

malate dehydrogenase

GOT:

aspartate aminotransferase

SDH:

succinate dehydrogenase

HEPES:

4-(2-hydroxyethyl)-1-piperazineethan-sulfonic acid

BSA:

bovine serum albumin

TPP:

thiamine pyrophosphate

DNP:

2,4-dinitrophenol

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DCPIP:

2,6-dichlorophenolindophenol

References

  • Addink, A.D.F., Boer, P., Wakabayashi, T., Green, D.E.: Enzyme localization in beef-heart mitochondria. A biochemical and electron-microscopic study. Eur. J. Biochem. 29, 47–59 (1972)

    PubMed  Google Scholar 

  • Barash, I., Mor, H., Sadon, T.: Evidence for ammonia-dependent de novo synthesis of glutamate dehydrogenase in detached oat leaves. Plant Physiol. 56, 856–858 (1975)

    Google Scholar 

  • Bergmeyer, H.U., Bernt, E.: Glutamat-Oxalacetat-Transaminase. In: Methoden der enzymatischen Analyse, vol. 1, pp. 769–775, Bergmeyer, H.U., ed. Weinheim: Chemie 1974

    Google Scholar 

  • Chou, K.H., Splittstoesser, W.E.: Glutamate dehydrogenase from pumpkin cotyledons. Plant Physiol. 49, 550–554 (1972)

    Google Scholar 

  • Coultate, T.P., Dennis, D.T.: Regulatory properties of a plant NAD: isocitrate dehydrogenase. Eur. J. Biochem. 7, 153–158 (1969)

    PubMed  Google Scholar 

  • Davies, D.D., Teixeira, A. N.: The synthesis of glutamate and the control of glutamate dehydrogenase in pea mitochondria. Phytochemistry 14, 647–656 (1975)

    Article  Google Scholar 

  • Dittmann J.: Dünnschicht-Chromatographie von Carbonsäuren an Cellulose. J. Chromatogr. 34, 407–410 (1968)

    Article  PubMed  Google Scholar 

  • Ehmke, A., Hartmann, T.: Properties of glutamate dehydrogenase from Lemna minor. Phytochemistry, 15, 1611–1617 (1976)

    Article  Google Scholar 

  • Ehmke, A., Hartmann, T.: Control of glutamate dehydrogenase from Lemna minor by divalent metal ions. Phytochemistry 17, 637–641 (1978)

    Article  Google Scholar 

  • Errel, A., Mor, H., Barash, I.: The isozymic nature and kinetic properties of glutamate dehydrogenase from safflower seedlings. Plant Cell Physiol. 14, 39–50 (1973)

    Google Scholar 

  • Eschrich, W., Hartmann, T.: Translokation und biochemisches Verhalten von D-und L-Phenylalanin bei Vicia faba. Planta 85, 213–227 (1969)

    Google Scholar 

  • Franke, W.W., Krien, S., Brown, R.M.: Simultaneous glutaraldehyde-osmium tetroxide fixation with postosmication. Histochemie 19, 162–164 (1969)

    PubMed  Google Scholar 

  • Garland, W.J., Dennis, D.T.: Steady-state kinetics of glutamate dehydrogenase from Pisum sativum L. mitochondria. Arch. Biochem. Biophys. 182, 614–625 (1977)

    PubMed  Google Scholar 

  • Gaspariková, O., Psenáková, T., Niznanská, A.: Location of nitrate reductase, nitrite reductase and glutamate dehydrogenase in the Zea mays roots. Biologia (Bratislava) 33, 35–42 (1978)

    Google Scholar 

  • Hartmann, T.: Endogen und exogen ausgelöste Änderung des Isoenzymspektrums der NAD-spezifischen Glutamatdehydrogenase im Sproß von Pisum sativum. Planta 111, 129–136 (1973)

    Google Scholar 

  • Hartmann, T.: Metabolism of organic N-compounds. Ammonium-assimilation in microorganisms and plants. Progr. Bot. 38, 118–128 (1976)

    Google Scholar 

  • Hartmann, T., Nagel, M., Ilert, H.I.: Organspezifische multiple Formen der Glutamatdehydrogenase in Medicago sativa. Planta 111, 119–128 (1973)

    Google Scholar 

  • Hill, R.L., Bradshaw, R.A.: Fumarase. In: Methods in enzymology, vol. 13, pp. 91–99, Colowick, S.P., Kaplan, N.O., eds. New York: Academic Press 1969

    Google Scholar 

  • Hock, B.: Isoenzyme der Malat-Dehydrogenase aus Wassermelonenkeimlingen: Mikroheterogenität und deren Aufhebung bei der Samenkeimung. Planta 110, 329–344 (1973)

    Google Scholar 

  • Joy, K.W.: Control of glutamate dehydrogenase from Pisum sativum roots. Phytochemistry 12, 1031–1040 (1973)

    Article  Google Scholar 

  • Kanamori, T., Konishi, S., Takahashi, E.: Inducible formation of glutamate dehydrogenase in rice plant roots by the addition of ammonia to the media. Physiol. Plant. 26, 1–6 (1972)

    Google Scholar 

  • Klingenberg, M., v. Haefen, H., Wenske, J.: Hydrogen pathways in mitochondria. II. The reductive amination of ketoglutarate. Analysis of pathways, stoichiometry and kinetics. Biochem. Z. 343, 452–478 (1965)

    PubMed  Google Scholar 

  • Kolloeffel, C.: Oxidative and phosphorylative activity of mitochondria from pea cotyledons during maturation of the seed. Planta 91, 321–328 (1970)

    Google Scholar 

  • Lee, D.W.: Glutamate dehydrogenase isoenzymes in Ricinus communis seedlings. Phytochemistry 12, 2631–2634 (1973)

    Article  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265 (1951)

    PubMed  Google Scholar 

  • Matlib, M.A., O'Brien, P.: Compartimentation of enzymes in the rat liver mitochondrial matrix. Arch. Biochem. Biophys. 167, 193–202 (1975)

    PubMed  Google Scholar 

  • Miflin, B.J., Lea, P.J.: The pathway of nitrogen assimilation in plants. Phytochemistry 15, 873–885 (1976)

    Article  Google Scholar 

  • Miflin, B.J., Lea, P.J.: Amino acid metabolism. Annu. Rev. Plant Physiol. 28, 299–329 (1977)

    Article  Google Scholar 

  • Moore, A.L., Wilson, S.B.: Translocation of some anions, cations, and acids in turnip (Brassica napus L.) mitochondria. J. Exp. Bot. 28, 607–618 (1977)

    Google Scholar 

  • Myers, W.F., Huang, K.Y.: Separation of intermediates of the citric acid cycle and related compounds by thin-layer chromatography. Anal. Biochem. 17, 210–213 (1966)

    PubMed  Google Scholar 

  • Nagel, M., Hartmann, T.: Glutamate dehydrogenase from Medicago sativa L.: Purification and comparative kinetic studies of organ-specific multiple forms. Z. Naturforsch. (in press)

  • Pahlich, E.: Sind die multiplen Formen der Glutamatdehydrogenase aus Erbsenkeimlingen Conformer? Planta 104, 78–88 (1972)

    Google Scholar 

  • Pahlich, E., Joy, K.W.: Glutamate dehydrogenase from pea roots: purification and properties of the enzyme. Can. J. Biochem. 49, 127–138 (1971)

    PubMed  Google Scholar 

  • Postius, C., Jacobi, G.: Dark starvation and plant metabolism. VI. Biosynthesis of glutamic acid dehydrogenase in detached leaves from Cucurbita maxima. Z. Pflanzenphysiol. 78, 133–140 (1976)

    Google Scholar 

  • Reynolds, E.S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)

    Article  PubMed  Google Scholar 

  • Ratajczak, L., Ratajczak, W., Mazurowa, H.: Isoenzyme pattern of glutamate dehydrogenase a reflection of nitrogen metabolism in Lupinus albus. Acta Soc. Bot. Pol. 46, 347–357 (1977)

    Google Scholar 

  • Sahulka, J., Gaudinova, A., Hadacova, V.: Regulation of glutamate dehydrogenase and nitrate reductase levels in excised pea roots by exogeneously supplied sugar. Z. Pflanzenphysiol. 75, 392–404 (1975)

    Google Scholar 

  • Scheid, H.-W., Ehmke, A., Hartmann, T.: Plant NAD-dependent Glutamate Dehydrogenase. Purification, molecular properties and metal ion activation of the enzymes from Lemna minor and Pisum sativum. Z. Naturforsch. (in press)

  • Shepard, D.V., Thurman, D.A.: Effect of nitrogen sources upon the activity of glutamate dehydrogenase of Lemna gibba. Phytochemistry 12, 1937–1946 (1973)

    Article  Google Scholar 

  • Skokut, T.A., Wolk, C.P., Thomas, J., Meeks, J.C., Shaffer, P.W., Chien, W.-S.: Initial organic products of assimilation of [13N] ammonium and [13N] nitrate by tobacco cells cultured on different sources of nitrogen. Plant Physiol. 62, 299–304 (1978)

    Google Scholar 

  • Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)

    PubMed  Google Scholar 

  • Stahl, E.: Dünnschichtchromatographie, 2. ed. Berlin, Heidelberg, New York: Springer 1967

    Google Scholar 

  • Tager, J.M., Slater, E.C.: Synthesis of glutamate from α-oxoglutarate and ammonia in rat liver mitochondria. I. Comparison of different hydrogen donors. Biochim. Biophys. Acta 77, 227–245 (1963)

    Article  PubMed  Google Scholar 

  • Thurman, D.A., Palin, C., Laycook, M.V.: Isoenzymatic nature of L-glutamic dehydrogenase of higher plants. Nature (London) 207, 193–194 (1965)

    Google Scholar 

  • Veech, R.L.: Regulation of coenzyme potential by near equilibrium reactions. In: Microenvironments and metabolic compartmentation, pp. 17–61, Srere, P.A., Estabrook, R.W., eds. New York: Academic Press 1978

    Google Scholar 

  • Williamson, J.R., Smith, C.M., La Noue, K.F., Bryla, J.: Feedback control of the citric acid cycle. In: Energy metabolism and the regulation of metabolic processes in mitochondria, pp. 185–210, Mehlman, M.A., Hanson, R.W., eds. New York: Academic Press 1972

    Google Scholar 

  • Yue, S.B.: Isoenzymes of glutamate dehydrogenase in plants. Plant Physiol. 44, 453–457 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Maximilian Steiner on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauen, W., Hartmann, T. Glutamate dehydrogenase from Pisum sativum L.. Planta 148, 7–16 (1980). https://doi.org/10.1007/BF00385435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385435

Key words

Navigation