Advertisement

Oecologia

, Volume 58, Issue 3, pp 286–289 | Cite as

Increasing atmospheric carbon dioxide: possible effects on arctic tundra

  • W. D. Billings
  • J. O. Luken
  • D. A. Mortensen
  • K. M. Peterson
Original Papers

Summary

Cores of wet coastal tundra collected in frozen condition in winter were used as microcosms in a phytotron experiment that assessed the effects of doubling the present atmospheric CO2 concentration, increasing temperature, and depressed water table on net ecosystem CO2 exchange. Doubling atmospheric CO2 had less significance in regard to net carbon capture or loss in this ecosystem as compared to the significant effects of increased temperature and lowered water table level. Both of the latter are to be expected as atmospheric CO2 increases in the Arctic.

Keywords

Carbon Dioxide Water Table Carbon Capture Freeze Condition Atmospheric Carbon Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltrusch M (1974) Dreidimensionale analyse des CO2-Konzentrationsfeldes über einer Flächenquelle. Archiv für Meteorologie, Geophysik und Bioklimatologie, Ser B, 22:73–108Google Scholar
  2. Biebl R (1967) Kurztag-Einflüsse auf arktische Pflanzen während der arktischen Langtage. Planta (Berl) 75:77–84Google Scholar
  3. Billings WD, Luken JO, Mortensen DA, Peterson KM (1982) Aretic tundra: A source or sink for atmospheric carbon dioxide in a changing environment? Oecologia (Berlin) 53:7–11Google Scholar
  4. Finn GA, Brun WA (1982) Effect of atmospheric CO2 enrichment on growth, non-structural carbohydrate content, and root nodule activity in soybean. Plant Physiology 69:327–331Google Scholar
  5. Gilliland RL (1982) Solar, volcanic, and CO2 forcing of recent climatic changes. Climatic Change 4:111–131Google Scholar
  6. Keeling CD (1973) Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25:174–198Google Scholar
  7. Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl CA, Jr, Guenther PR, Waterman LS, Chin JFS (1976a) Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28:538–551Google Scholar
  8. Keeling CD, Adams JA, Jr, Ekdahl CA, Jr, Guenther PR (1976b) Atmospheric carbon dioxide variations at the South Pole. Tellus 28:552–564Google Scholar
  9. Keeling CD, Bacastow RB (1977) Impact of industrial gases on climate. In Energy and climate, Studies in geophysics. National Academy of Sciences, Washington, pp 72–95Google Scholar
  10. Kramer PJ (1981) Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31:29–33Google Scholar
  11. Manabe S, Stouffer RJ (1979) A CO2-climate sensitivity study with a mathematical model of the global climate. Nature 282 (29 Nov):491–493Google Scholar
  12. Manabe S, Wetherald RT (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of the Atmospheric Sciences 32:3–15CrossRefGoogle Scholar
  13. Manabe S, Wetherald RT, Stouffer RJ (1981) Summer dryness due to an increase of atmospheric CO2 concentration. Climatic Change 3:347–386Google Scholar
  14. Miller PC (ed) (1981) Carbon balance in northern ecosystems and the potential effect of carbon dioxide induced climatic change. U.S. Department of Energy Conf-8003118, Carbon Dioxide Effects Research and Assessment Program 015, p 109Google Scholar
  15. Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecological Monographs 31:1–29Google Scholar
  16. Parkinson CL, Kellogg WW (1979) Arctic sea ice decay simulated for a CO2-induced temperature rise. Climatic Change 2:149–162Google Scholar
  17. Patterson DT, Flint EP (1980) Potential effects of global atmospheric CO2 enrichment on the growth and competitiveness of C3 and C4 weed and crop plants. Weed Science 28:71–75Google Scholar
  18. Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics 8:51–81Google Scholar
  19. Schlesinger WH, Melack JM (1981) Transport of organic carbon in the world's rivers. Tellus 33:172–187Google Scholar
  20. Shaver GR, Billings WD (1977) Effect of daylength and temperature on root elongation in tundra graminoids. Oecologia (Berlin) 28:57–65Google Scholar
  21. Sionit N, Hellmers H, Strain BR (1982) Interaction of atmospheric CO2 enrichment and irradiance on plant growth. Agronomy Journal 74:721–725Google Scholar
  22. Stuiver M (1978) Atmospheric carbon dioxide and carbon reservoir changes. Science 199:253–258Google Scholar
  23. Teeri JA (1976) Phytotron analysis of a photoperiodic response in a High Arctic plant species. Ecology 57:374–379Google Scholar
  24. Wigley TML, Jones PD, Kelly PM (1980) Scenario for a warm, high CO2 world. Nature 283 (3 January):17–21Google Scholar
  25. Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB (1978) The biota and the world carbon budget. Science 199:141–146Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • W. D. Billings
    • 1
  • J. O. Luken
    • 1
  • D. A. Mortensen
    • 1
  • K. M. Peterson
    • 2
  1. 1.Department of BotanyDuke UniversityDurhamUSA
  2. 2.Department of BotanyClemson UniversityClemsonUSA

Personalised recommendations