Skip to main content
Log in

Nachweis einer Schwellenwertsregulation durch Phytochrom bei der Photomodulation des Hypokotylstreckungswachstums von Senfkeimlingen (Sinapis alba L.)

Demonstration of a threshold regulation by phytochrome in the photomodulation of longitudinal growth of the hypocotyl of mustard seedlings (Sinapis alba L.)

  • Published:
Planta Aims and scope Submit manuscript

Summary

The inhibition of hypocotyl lengthening in intact mustard seedlings is controlled by two photosensitive systems which can be experimentally separated.

  1. 1.

    Kinetics of the growth response in the dark after red and far-red irradiation (Figs. 1, 2) demonstrate the operation of Pfr in the ground state via a threshold mechanism similar to the regulation of lipoxygenase synthesis in the mustard cotyledons (c. f. ref. [27]). This threshold mechanism determines the duration of the growth inhibition (Δt) following irradiation (Fig. 1, 2). Δt is dependent on the relative Pfr concentration at the beginning of the dark period and on the half life of Pfr destruction, but it is independent of the quantum flux density of far-red light (Fig. 4). The effect of 5 min red light on Δt can be fully reversed by 5 min far-red light (Fig. 3). The data reveal a quantitative relationship between the relative Pfr concentration and the photomorphogenetic response, Δt (Fig. 6). This relationship may explain in principle the logarithmic correlation between the percentage of phytochrome converted to Pfr by an initial irradiation and the subsequent response which has also been reported in the literature.

  2. 2.

    In continuous far-red light the velocity constant of the steady state growth is controlled by a “high intensity reaction” which shows the usual logarithmic dependence on quantum flux density (Fig. 4, 5), but no phytochrome destruction is apparent (Fig. 2). According to Hartmann (ref.[11–13]) this “high intensity reaction” can also be attributed to Pfr, which in this case acts through some excited state, P *fr .

It is concluded that the two photoreactive systems involve separate populations of phytochrome, which inhibit cell lengthening by independent control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bienger, I., Schopfer, P.: Die Photomodulation der Akkumulationsrate von Ascorhinsäure beim Senfkeimling (Simapis alba L.) durch Phytochrom. Planta (Berl.) 93, 152–159 (1970).

    Google Scholar 

  2. Boisard, J., Marmé, D., Schäfer, E.: The demonstration in vivo of more than one form of Pfr. Planta (Berl.) 99, 302–310 (1971).

    Google Scholar 

  3. Bopp, M., Capesius, I.: Streckungshemmung durch FUDR bei den Hypokotylen von Sinapis alba. Planta (Berl.) 96, 35–42 (1971).

    Google Scholar 

  4. Briggs, W. R., Chon, H. P.: The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles. Plant Physiol. 41, 1159–1166 (1966).

    Google Scholar 

  5. Butler, W. L., Hendricks, S. B., Siegelman, H. W.: Action spectra of phytochrome in vitro. Photochem. Photobiol. 3, 521–528 (1964).

    Google Scholar 

  6. —, Lane, H. C., Siegelman, H. W.: Nonphotochemical transformations of phytochrome in vivo. Plant Physiol. 38, 514–519 (1963).

    Google Scholar 

  7. Downs, R. J.: Photoreversibility of leaf and hypocotyl elongation of dark grown red kidney bean seedlings. Plant Physiol. 30, 468–473 (1955).

    Google Scholar 

  8. Elliot, W. M., Miller, J. H.: Changes in photosensitive stem growth in intact peas following irradiation. Plant Physiol. 44, 623–630 (1969).

    Google Scholar 

  9. Fox, L. R., Hillman, W. S.: Differences in photoresponse and phytochrome spectrophotometry between etiolated and de-etiolated pea stem tissue. Plant Physiol. 43, 1799–1804 (1968).

    Google Scholar 

  10. ——: Response of tissue with different phytochrome contents to various initial photostationary states. Plant Physiol. 43, 823–826 (1968).

    Google Scholar 

  11. Hartmann, K. M.: A general hypothesis to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 349–366 (1966).

    Google Scholar 

  12. —: Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z. Naturforsch. 22b, 1172–1175 (1967).

    Google Scholar 

  13. Hartmann, K. M.: Photoreceptor problems in photomorphogenic responses under high energy conditions (UV-blue-far-red). In: Book of abstracts. European Photobiology Symposium, Hvar (Yugoslavia), p. 29–32 (1967).

  14. Hillman, W. S.: Phytochrome conversion by brief illumination and the subsequent elongation of etiolated Pisum stem segments. Physiol. Plantar. 18, 346–358 (1965).

    Google Scholar 

  15. —: The physiology of phytochrome. Ann. Rev. Plant Physiol. 18, 301–324 (1967).

    Google Scholar 

  16. Hopkins, W. G.: Correlation of phytochrome transformations with photo-control of Avena coleoptile segment elongation. Canad. J. Bot. 49, 467–470 (1971).

    Google Scholar 

  17. —, Hillman, W. S.: Relationships between phytochrome state and photo-sensitive growth of Avena coleoptile segments. Plant Physiol. 41, 593–598 (1966).

    Google Scholar 

  18. Kendrick, R. E., Hillman, W. S.: Dark reversion of phytochrome in Sinapis alba L. Plant Physiol. 46, 596–598 (1970).

    Google Scholar 

  19. Klein, W. H., Edwards, J. L., Shropshire, W., Jr.: Spectrophotometric measurements of phytochrome in vivo and their correlation with photomorphogenic responses of Phaseolus. Plant Physiol. 42, 264–270 (1967).

    Google Scholar 

  20. Loercher, L.: Phytochrome changes correlated to mesocotyl inhibition in etiolated Avena seedlings. Plant Physiol. 41, 932–936 (1966).

    Google Scholar 

  21. Marmé, D.: Photometrische Messungen am Phytochromsystem von Senfkeimlingen (Sinapis alba L.). Planta (Berl.) 88, 43–57 (1969).

    Google Scholar 

  22. Mohr, H.: Der Lichteinfluß auf das Wachstum der Keimblätter bei Sinapis alba L. Planta (Berl.) 53, 219–245 (1959).

    Google Scholar 

  23. —: The control of plant growth and development by light. Biol. Rev. 39, 87–112 (1964).

    Google Scholar 

  24. Mohr, H.: Untersuchungen zur phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.) Z. Pflanzenphysiol. 54, 63–83 (1966).

    Google Scholar 

  25. —, Wehrung, M.: Die Steuerung des Hypokotylwachstums bei den Keimlingen von Lactuca sativa L. durch sichtbare Strahlung. Planta (Berl.) 55, 438–450 (1960).

    Google Scholar 

  26. —, Meyer, U., Hartmann, K.: Die Beeinflussung der Farnsporen-Keimung [Osmunda cinnamomea (L.) und O. claytoniana (L.)] über das Phytochromsystem und die Photosynthese. Planta (Berl.) 60, 483–496 (1964).

    Google Scholar 

  27. Oelze-Karow, H., Schopfer, P., Mohr, H.: Phytochrome-mediated repression of enzyme synthesis (lipoxygenase): A threshold phenomenon. Proc. nat. Acad. Sci. (Wash.) 65, 51–57 (1970).

    Google Scholar 

  28. Pjon, C.-J., Furuya, M.: Phytochrome action in Oryza sativa L. I. Growth responses of etiolated coleptiles to red, far-red and blue light. Plant Cell Physiol. 8, 709–718 (1967).

    Google Scholar 

  29. ——: Phytochrome action in Oryza sativa L. II. The spectrophotometric versus the physiological status of phytochrome in coleoptiles. Planta (Berl.) 81, 303–313 (1968).

    Google Scholar 

  30. Robbach, J.: The influence of the phytochrome reaction on the growth of Lemna minor L. Mededel. Landbouwhogeschool Wageningen 65 (14), 1–11 (1965).

    Google Scholar 

  31. Schäfer, E.: Persönliche Mitteilung.

  32. Schopfer, P.: Der Einfluß von Actinomycin D und Puromycin auf die phytochrominduzierte Wachstumshemmung des Hypokotyls beim Senfkeimling (Sinapis alba L.). Planta (Berl.). 72, 306–320 (1967).

    Google Scholar 

  33. Schopfer, P.: Unveröffentlichte Daten.

  34. —: Die Hemmung des Streckungswachstums durch Phytochrom—ein Stoffaufnahme erfordernder Prozeß? Planta (Berl.) 85, 383–388 (1969).

    Google Scholar 

  35. Schopfer, P., Mohr, H.: Phytochrome-mediated induction of phenylalanine ammonialyase in mustard seedlings: A contribution to eliminate some misconceptions. Plant Physiol. (in press).

  36. Wagner, E., Mohr, H.: Kinetic studies to interpret “high-energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 397–406 (1966).

    Google Scholar 

  37. Weintraub, R. L., Robinson, C.: Study of the phytochrome system in the coleoptile of Zea mays. In: Book of abstracts. Fifth Internat. Congr. on Photobiol. Hanover (U.S.A.), p. 157 (1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schopfer, P., Oelze-Karow, H. Nachweis einer Schwellenwertsregulation durch Phytochrom bei der Photomodulation des Hypokotylstreckungswachstums von Senfkeimlingen (Sinapis alba L.). Planta 100, 167–180 (1971). https://doi.org/10.1007/BF00385217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385217

Navigation