Skip to main content
Log in

The role of endosymbiotic algae in photoaccumulation of green Paramecium bursaria

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The endosymbiotic unit of Paramecium bursaria with Chlorella sp. photoaccumulates in white, blue-green, and red light (λ<700 nm), whereas alga-free Paramecia never do. The intensity of photoaccumulation depends on both the light fluence rate and the size of the symbiotic algal population. Photoaccumulation can be stopped completely with 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosynthetic electron transport. Hence the photosynthetic pigments of the algae act as receptors of the light stimulus for photomovement and a close connection must exist between photosynthesis of the algae and ciliary beating of the Paramecium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buchsbaum-Pearse, V. (1974) Modification of sea anemone behaviour by symbiotic zooxanthellae: phototaxis. Biol. Bull. 147, 630–640

    Google Scholar 

  • Doughty, M.J., Diehn, B. (1980) Flavins as photoreceptor pigments for behavioural responses in motile microorganisms. In: Structure and bonding 41, pp. 45–70, Dunitz et al., eds., Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eckert, R., Naitoh, Y. (1972) Bioelectric control of locomotion in the ciliates. J. Protozool. 19, 237–241

    Google Scholar 

  • Engelmann, T.W. (1882) Über Licht- und Farbenperception niederster Organismen. E. Pflüger Archiv f. Physiologie Vol. 2, 387–400

    Google Scholar 

  • Häder, D.P. (1977a) Influence of electric fields in photophobic reactions in blue-green algae. Arch. Microbiol. 114, 83–86

    Google Scholar 

  • Häder, D.P. (1977b) Speculations about sensory transduction. In: Research in photobiology, pp. 95–102, Castellani, A., ed., Plenum Press, New York London

    Google Scholar 

  • Häder, D.P. (1979) Photomovement. In: Encyclopedia of plant physiology, New Series, vol. 7, pp. 268–309, Haupt, W., Feinleib, M.E., eds., Springer, Berlin Heidelberg New York

    Google Scholar 

  • Iwatsuki, K., Naitoh, Y. (1978) Membrane excitation in Paramecium bursaria. Proc. 49th Ann. Meet. Zool. Soc. Japan Zool. Mag. 87, 427

    Google Scholar 

  • Jennings, H.S. (1915) Behaviour of the lower organisms. Columbia University Press, New York

    Google Scholar 

  • Keeble, F. (1910) Plant-animals: a study in symbiosis. University Press, Cambridge

    Google Scholar 

  • Machemer, H. (1977) Motoractivity and bioelectric control of cilia. Fortschr. Zool. 24, 195–210

    Google Scholar 

  • Neuscheler, W. (1967) Bewegung und Orientierung bei Micrasterias denticulata Bréb. im Licht. II. Photokinesis und Phototaxis. Z. Pflanzenphysiol. 57, 151–172

    Google Scholar 

  • Nultsch, W. (1971) Phototactic and photokinetic action spectra of the diatom Nitzschia communis. Photochem. Photobiol. 14, 705–712

    Google Scholar 

  • Nultsch, W. (1975) Phototaxis and photokinesis. In: Primitive sensory and communication systems: The taxes and tropisms of micro-organisms and cells, pp. 29–90, Carlile, M.J., ed., Acad. Press, London New York San Francisco

    Google Scholar 

  • Nultsch, W., Häder, D.P. (1979) Photomovement of motile microorganisms. Photochem. Photobiol. 29, 423–437

    Google Scholar 

  • Nultsch, W., Häder, D.P. (1980) Light perception and sensory transduction in photosynthetic prokaryotes. In: Structure and bonding 41, pp. 111–139, Dunitz et al., eds., Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pado, R. (1972) Spectral activity of light and phototaxis in Paramecium bursaria. Acta Protozool. XI, 387–393

    Google Scholar 

  • Reisser, W. (1976) Die stoffwechselphysiologischen Beziehungen zwischen Paramecium bursaria Ehrbg. und Chlorella spec. in der Paramecium bursaria Symbiose. I. Der Stickstoff- und der Kohlenstoffstoffwechsel. Arch. Microbiol. 107, 357–360

    Google Scholar 

  • Saji, M., Oosawa, F. (1974) Mechanism of photoaccumulation in Paramecium bursaria. J. Protozool. 21, 556–561

    Google Scholar 

  • Schuchart, H. (1980) Photomovement of the red alga Porphyridium cruentum (Ag.) Naegeli. III. Action spectrum of the photophobic response. Arch. Microbiol. 128, 105–112

    Google Scholar 

  • Wenderoth, K., Häder, D.P. (1979) Wavelength dependence of photomovement in Desmids. Planta 145, 1–5

    Google Scholar 

  • Wichtermann, R. (1953) The biology of Paramecium. The Blakiston Company, Inc., New York Toronto

    Google Scholar 

  • Wood, D.C. (1976) Action spectrum and electrophysiological responses correlated with the photophobic responses of Stentor coeruleus. Photochem. Photobiol. 24, 261–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niess, D., Reisser, W. & Wiessner, W. The role of endosymbiotic algae in photoaccumulation of green Paramecium bursaria . Planta 152, 268–271 (1981). https://doi.org/10.1007/BF00385155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385155

Key words

Navigation