Skip to main content
Log in

The loss of phytochrome photoreversibility in vitro

II. Properties of killer and its reaction with phytochrome

  • Published:
Planta Aims and scope Submit manuscript

Abstract

“Killer”, a substance extracted from stem tissue of etiolated pea seedlings (Pisum sativum L. v. Alaska), interacts specifically with the far-red-absorbing form of phytochrome (Pfr) in vitro in a temperature-independent, rapid, stoichiometric fashion to cause a loss of phytochrome photoreversibility. The chromatographic, solubility, and spectral properties of partially purified fractions indicate that Killer is a cyclic, unsaturated molecule containing ionizible hydroxyl groups; its molecular weight is unknown, although probably low. Possible mechanisms by which the Killer-phytochrome interaction results in the loss of photoreversibility are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Briggs, W.R., Fork, D.C.: Long-lived intermediates in phytochrome transformation. I. In vitro studies. Plant Physiol. 44, 1081–1088 (1969a)

    Google Scholar 

  • Briggs, W.R., Fork, D.C.: Long-lived intermediates in phytochrome transformation. II. In vitro and in vivo studies. Plant Physiol. 44, 1089–1094 (1969b)

    Google Scholar 

  • Briggs, W.R., Rice, H.V.: Phytochrome: Chemical and physical properties and mechanism of action. Ann. Rev. Plant Physiol. 23, 293–334 (1972)

    Google Scholar 

  • Briggs, W.R., Zollinger, W.D., Platz, B.B.: Some properties of phytochrome isolated from dark-grown Oat seedlings (Avena sativa L.). Plant Physiol. 43, 1239–1243 (1968)

    Google Scholar 

  • Butler, W.L., Lane, H.C.: Dark transformations in vivo. II. Plant Physiol. 40, 13–17 (1965)

    Google Scholar 

  • Butler, W.L., Lane, H.C., Siegelman, H.W.: Non-photochemical transformations of phytochrome in vivo. Plant Physiol. 38, 514–519 (1963)

    Google Scholar 

  • Butler, W.I., Siegelman, H.W., Miller, C.O.: Denaturation of phytochrome. Biochemistry 3, 851–857 (1964)

    Google Scholar 

  • Cross, D.R., Linschitz, H., Kasche, V., Tenebaum, J.: Low-temperature studies on phytochrome: light and dark reactions in red and far-red transformation and new intermediate forms of phytochrome. Proc. Nat. Acad. Sci. USA 61, 1095–1101 (1968)

    Google Scholar 

  • Dooskin, R.H., Mancinelli, A.L.: Phytochrome decay and coleoptile elongation in Avena following various light treatments. Bull. Torrey Bot. Club 95, 474–487 (1968)

    Google Scholar 

  • Everett, M.S., Briggs, W.R.: Some spectral properties of pea phytochrome in vivo and in vitro. Plant Physiol. 45, 679–683 (1970)

    Google Scholar 

  • Fox, L.R.: Loss of phytochrome photoreversibility in vitro. I. Extraction and partial purification of Killer. Plant Physiol. 55, 386–389 (1975)

    Google Scholar 

  • Fox, L.R., Hillman, W.S.: Response of tissue with different phytochrome contents to various initial photostationary states. Plant Physiol. 43, 823–826 (1968)

    Google Scholar 

  • Furuya, M.: Biochemistry and physiology of phytochrome. in: Progress in Phytochemistry, vol. I, pp. 347–405, Reinhold, L., Liwschitz, Y., eds. New York: Interscience 1968

    Google Scholar 

  • Furuya, M., Hillman, W.S.: Observations on spectrophotometrically assayable phytochrome in vivo in etiolated Pisum seedlings. Planta (Berl.) 63, 31–42 (1964)

    Google Scholar 

  • Furuya, M., Hillman, W.S.: Rapid destruction of the Pfr form of phytochrome by a substance in extracts of Pisum tissue. Plant Physiol. 41, 1242–1244 (1966)

    Google Scholar 

  • Furuya, M., Hopkins, W.F., Hillman, W.S.: Effects of metal-complexing and sulfhydryl compounds on nonphotochemical phytochrome changes in vivo. Arch. Biochem. Biophys. 112, 180–196 (1965)

    Google Scholar 

  • Gardner, G., Briggs, W.R.: Some properties of phototransformation of rye phytochrome in vitro. Photochem. Photobiol. 19, 367–377 (1974)

    Google Scholar 

  • Gardner, G., Pike, C.S., Rice, H.V., Briggs, W.R.: “Disaggregation” of phytochrome in vitro — a consequence of proteolysis. Plant Physiol. 48, 686–693 (1971)

    Google Scholar 

  • Gardner, G., Thompson, W.F., Briggs, W.R.: Differential reactivity of the red- and far-red-absorbing forms of phytochrome to [14C]N-ethyl maleimide. Planta (Berl.) 117, 367–372 (1974)

    Google Scholar 

  • Hillman, W.S.: The physiology of phytochrome. Ann. Rev. Plant Physiol. 18, 301–324 (1967)

    Google Scholar 

  • Hopkins, D.W., Butler, W.L.: Immunochemical and spectroscopic evidence for protein conformational changes in phytochrome transformations. Plant Physiol. 45, 567–570 (1970)

    Google Scholar 

  • Kendrick, R.E., Frankland, B.: The in vivo properties of Amaranthus phytochrome. Planta (Berl.) 86, 21–32 (1969)

    Google Scholar 

  • Kendrick, R.E., Spruit, C.J.P.: Light maintains high levels of phytochrome intermediates. Nature New Biol. 237, 281–282 (1972a)

    Google Scholar 

  • Kendrick, R.E., Spruit, C.J.P.: Phytochrome properties and the molecular environment. Plant Physiol. 52, 327–331 (1972b)

    Google Scholar 

  • Kendrick, R.E., Spruit, C.J.P.: Phytochrome intermediates in vivo. I. The effects of temperature, light intensity, wavelength and oxygen on intermediate accumulation. Photochem. Photobiol. 18, 139–144 (1973a)

    Google Scholar 

  • Kendrick, R.E., Spruit, C.J.P.: Phytochrome intermediates in vivo. III. Kinetic analysis of intermediate reactions at low temperature. Photochem. Photobiol. 18, 153–159 (1973b)

    Google Scholar 

  • Kidd, G.H., Pratt, L.H.: Phytochrome destruction: An apparent requirement for protein synsthesis in the induction of the destruction mechanism. Plant Physiol. 52, 309–311 (1973)

    Google Scholar 

  • Linschitz, H., Kasche, V., Butler, W.L., Siegelman, H.W.: The kinetics of phytochrome conversion. J. Biol. Chem. 241, 3395–3403 (1966)

    Google Scholar 

  • Lisansky, S.G., Galston, A.W.: Phytochrome stability in vitro. I. Effect of metal ions. Plant Physiol. 53, 352–359 (1974)

    Google Scholar 

  • Manabe, K., Furuya, M.: Effects of metallic ions on nonphotochemical decay of Pfr in Avena coleoptiles. Bot. Mag. (Tokyo) 84, 417–423 (1971)

    Google Scholar 

  • McArthur, J.A., Briggs, W.R.: In vivo phytochrome reversion in immature tissue of the Alaska pea seedling. Plant Physiol. 48, 46–49 (1971)

    Google Scholar 

  • Pike, C.S., Briggs, W.R.: Partial purification and characterization of a phytochrome-degrading neutral protease from etiolated oat shoots. Plant Physiol. 49, 521–530 (1972)

    Google Scholar 

  • Pratt, L.H., Briggs, W.R.: Photochemical and nonphotochemical reactions of phytochrome in vivo. Plant Physiol. 41, 467–474 (1966)

    Google Scholar 

  • Roux, S.J.: Chemical evidence for conformational differences between the red- and far-red-absorbing forms of oat phytochrome. Biochemistry 11, 1930–1936 (1972)

    Google Scholar 

  • Roux, S.J., Hillman, W.S.: The effects of glutaraldehyde and two monoaldehydes on phytochrome. Arch. Biochem. Biophys 131, 423–429 (1969)

    PubMed  Google Scholar 

  • Siegelman, H.W., Butler, W.L.: Properties of phytochrome. Ann. Rev. Plant Physiol. 16, 388–392 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I=Fox, 1975

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, L.R. The loss of phytochrome photoreversibility in vitro. Planta 135, 217–223 (1977). https://doi.org/10.1007/BF00384893

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384893

Key words

Navigation