Skip to main content
Log in

Untersuchungen über die lichtabhängige Carotinoidsynthese

II. Ersatz der Lichtinduktion durch Mercuribenzoat

Light-dependent carotenoid synthesis

II. Substitution of photoinduction by mercuribenzoate

  • Published:
Planta Aims and scope Submit manuscript

Summary

In the light-dependent carotenoid synthesis in Fusarium aquaeductuum photoinduction can be substituted by incubation of the mycelium with the SH-group poisons p-chloro-and p-hydroxymercuribenzoate in the dark. The minimum concentration of both substances effective for induction is 5.10-6 molar; maximal production of pigments occurs at molar concentration of 5.10-5–10-4. In the mycelium incubated with mercuribenzoate, carotenoid synthesis starts after a lagperiod of 4–6 hours, increases until 24 hours after addition of the poison and then continues for some days at a constant rate. The result that the lag-period after treatment with mercuribenzoate is much longer than it is after photoinduction may be due to the fact that in the presence of mercuribenzoate the respiration of the mycelium is severely decreased (to 25% of the normal value at molar concentrations of 5.10-5) and as consequence other metabolic processes are also depressed. From experiments in which p-hydroxy-mercuribenzoate was removed at different times after addition by washing with distilled water, it can be seen that even an incubation time of only 2 hours is effective for induction. Other SH-group blocking substances do not induce carotenoid synthesis; other mercuring compounds and benzoic acid are also ineffective.

Carotenoid production induced by illumination or by incubation with mercuri-benzoate is quantitatively inhibited by actidion (cycloheximid), which is a potent inhibitor of protein synthesis in fungi. The inhibition decreases with increasing time between the beginning of illumination or incubation with mercuribenzoate and the addition of actidion; from this result it can be concluded that as a consequence of the induction reaction carotenogenic enzymes are newly formed. If actidion is added 3 hours after the beginning of illumination there is almost no inhibition of pigment production, indicating that carotenoid synthesis itself is not inhibited by actidion.

From these results it is concluded that light and mercuribenzoate may catalyse the same reaction in the chain of the regulatory mechanism, namely, a blocking of SH-groups. We therefore assume that the function of light in the induction mechanism is to photooxydize SH-groups of a specific compound. Several possibilities as to which compound may be the site of this reaction are discussed.

Zusammenfassung

Bei der lichtabhängigen Carotinoidsynthese von Fusarium aquaeductuum kann die Lichtwirkung durch eine Inkubation des Pilzes im Dunkeln mit den SH-Gruppen-Giften p-Chloro- und p-Hydroxy-Mercuribenzoat in Konzentrationen von 5·10-6 bis 10-4 molar ersetzt werden. In den mit Mercuribenzoat versetzten Proben beginnt die Farbstoffbildung erst nach einer lag-Periode von 4–6 Std, steigt bis 24 Std nach Versuchsbeginn langsam an und geht dann mit konstanter Syntheserate mehrere Tage lang weiter. Für die Auslösung der Pigmentsynthese genügt bereits eine 2stündige Einwirkungsdauer des Giftes. Andere SH-Gruppen blockierende Substanzen induzieren keine Farbstoffbildung, ebenso sind Hg-Verbindungen und Benzoesäure wirkungslos.

Sowohl die durch Belichtung als auch die durch Mercuribenzoat induzierte Carotinoidsynthese wird durch das Proteinsynthesegift Actidion (Cycloheximid) vollständig unterdrückt. Die Wirkung des Hemmstoffes wird zunehmend geringer, wenn er erst verschiedene Zeiten nach Belichtung bzw. Mercuribenzoatzugabe zugesetzt wird; daraus kann geschlossen werden, daß als Folge der Induktion die für die Carotinoid-synthese notwendigen Enzyme neu gebildet werden. Drei Stunden nach Lichtbeginn hemmt Actidion die Pigmentproduktion praktisch nicht mehr; dieses Ergebnis beweist, daß die Carotinoidsynthese selbst durch das Gift nicht beeinträchtigt wird.

Aus den vorliegenden Befunden wird geschlossen, daß Licht und Mercuribenzoat innerhalb des Regulationsmechanismus die gleiche, zur Induktion der Farbstoffbildung führende Reaktion bewirken, nämlich die Blockierung von SH-Gruppen. Wir vermuten deshalb, daß die Wirkung des Lichts bei der Induktion auf einer Photooxydation von SH-Gruppen an einer spezifischen Substanz beruht; verschiedene Möglichkeiten, an welcher Verbindung eine solche Reaktion stattfinden könnte, werden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Batra, P. P., and H. C. Rilling: On the mechanism of photoinduced carotenoid synthesis: Aspects of the photoinductive reaction. Arch. Biochem. 107, 485–492 (1964).

    Google Scholar 

  • Canovas, J. L., and H. L. Kornberg: Properties and regulation of phosphopyruvate carboxylase activity in Escherichia coli. Proc. roy. Soc. B. 165, 189–205 (1966).

    Google Scholar 

  • Carlile, M. J.: The photobiology of fungi. Ann. Rev. Plant Physiol. 16, 175–202 (1965).

    Google Scholar 

  • Casola, L., Ph. E. Brumby, and V. Massey: The reversible conversion of lipoyl dehydrogenase to an artifactual enzyme by oxidation of sulfhydryl group. J. biol. Chem. 241, 4977–4984 (1966).

    Google Scholar 

  • —, and V. Massey: Differential effects of mercurial on the lipoyl reductase and diaphorase activities of lipoyl dehydrogenase. J. biol. Chem. 241, 4985–4993 (1966).

    Google Scholar 

  • Devenyi, T., S. J. Rogers, and R. G. Wolfe: Reversible activation and inactivation of mitochondrial malate dehydrogenase with parahydroxy mercuribenzoate. Biochem. Biophys. Res. Commun. 23, 496–501 (1966).

    Google Scholar 

  • Eberhard, D., W. Rau, u. C. Zehender: Über den Einfluß des Lichts auf die Carotinoidbildung von Fusarium aquaeductuum. Planta (Berl.) 56, 302–308 (1961).

    Google Scholar 

  • Engelsma, G.: The influence of light of different spectral regions on the synthesis of phenolic compounds in gherkin seedlings in relation to photomorphogenesis. III. Hydroxylation of cinnamic acid. Acta bot. neerl. 15, 394–405 (1966).

    Google Scholar 

  • —, and G. Meijer: The influence of light of different spectral regions on the synthesis of phenolic compounds in gherkin seedlings in relation to photomorphogenesis. I. Biosynthesis of phenolic compounds. Acta bot. neerl. 14, 54–72 (1965).

    Google Scholar 

  • Goodwin, T. W., D. M. Thomas, R. J. Harries, and J. T. O. Kirk: Mode of action of trisporic acid on carotenogenesis (paper abstract). T. Kjemi, Bergv., Metallurgi 26 (1966).

  • Grob, E. C.: The biosynthesis of carotenoids by microorganisms. Ciba Foundation Symp. on Biosynthesis of Terpenes and Sterols 1959, p. 267–276.

  • —, K. Kirschner u. F. Lynen: Neues über die Biosynthese der Carotinoide. Chimia (Aarau) 15, 308–310 (1961).

    Google Scholar 

  • Haxo, F.: Studies on the carotenoid pigments of Neurospora. I. Composition of the pigment. Arch. Biochem. 20, 400–121 (1949).

    Google Scholar 

  • —: Some biochemical aspects of fungal carotenoids. Fortschr. Chem. org. Naturstoffe 12, 169–197 (1955).

    Google Scholar 

  • Jensen, R. A., and E. W. Nester: Regulatory enzymes of aromatic amino acid biosynthesis in Bacillus subtilis II. The enzymology of feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase. J. biol. Chem. 241, 3373–3380 (1966).

    Google Scholar 

  • Keister, D. L., and R. B. Hemmes: Pyridine nucleotide transhydrogenase from Chromatium. J. biol. Chem. 241, 2820–2825 (1966).

    Google Scholar 

  • Klein, R. M., and P. C. Edsall: Substitution of redox chemicals for radiation in phytochrome-mediated photomorphogenesis. Plant Physiol. 41, 949–952 (1966).

    Google Scholar 

  • Lange, H., u. H. Mohr: Die Hemmung der phytochrominduzierten Anthocyan-synthese durch Actinomycin D und Puromycin. Planta (Berl.) 67, 107–121 (1965).

    Google Scholar 

  • Mann, J. D.: Use and misuse of antibiotics in botanical research. Bioscience 15, 464–465 (1965).

    Google Scholar 

  • Mohr, H., u. R. Senf: Die Hemmung der phytochrom-induzierten Anthocyan-synthese durch Puromycin und 2-thiouracil. Planta (Berl.) 71, 195–203 (1966).

    Google Scholar 

  • Rau, W.: Über den Einfluß der Temperatur auf die lichtabhängige Carotinoidbildung von Fusarium aquaeductuum. Planta (Berl.) 59, 123–137 (1962).

    Google Scholar 

  • Rau, W.: Light-dependent carotenoid synthesis in Fusarium aquaeductuum (paper abstract). T. Kjemi, Bergv., Metallurgie 26 (1966).

  • —: Untersuchungen über die lichtabhängige Carotinoidsynthese I. Das Wirkungsspektrum von Fusarium aquaeductuum. Planta (Berl.) 72, 14–28 (1967).

    Google Scholar 

  • Rau, W., B. Feuser, and A. Rau-Hund: Substitution of p-chloro- or p-hydroxymercuribenzoate for light in carotenoid synthesis by Fusarium aquaeductuum. Biochim. biophys. Acta (Amst) (im Druck).

  • —, u. C. Zehender: Die Carotinoide von Fusarium aquaeductuum Lagh. Arch. Mikrobiol. 32, 423–428 (1959).

    Google Scholar 

  • Rilling, H. C.: Photoinduction of carotenoid synthesis of a Mycobacterium sp. Biochim. biophys. Acta (Amst.) 60, 548–556 (1962).

    Google Scholar 

  • —: On the mechanism of photoinduction of carotenoid synthesis. Biochim. biophys. Acta (Amst.) 79, 464–475 (1964).

    Google Scholar 

  • Scherf, H., u. M. H. Zenk: Der Einfluß des Lichts auf Flavonoidsynthese und Enzyminduktion bei Fagopyrum esculentum Moench. Z. Pflanzenphysiol. (im Druck).

  • Siegel, M. R., and H. D. Sisler: Site of action of cycloheximid in cells of Saccharomyces pastorianus. I. Effect of the antibiotic on cellular metabolism. Biochim. biophys. Acta (Amst.) 87, 70–83 (1964).

    Google Scholar 

  • Walker, G. A., and G. L. Kilgour: Pyridine nucleotide oxidizing enzymes of Lactobacillus casei. II. Oxidase and peroxidase. Arch. Biochem. 111, 534–539 (1965).

    Google Scholar 

  • Zalokar, M.: Studies on biosynthesis of carotenoids in Neurospora crassa. Arch. Biochem. 50, 71–80 (1954).

    Google Scholar 

  • —: Biosynthesis of carotenoids in Neurospora. Action spectrum of photoactivation. Arch. Biochem. 56, 318–325 (1955).

    Google Scholar 

  • Zenk, M. H.: Untersuchungen zum Phototropismus der Avena-Koleoptile: II. Pigmente. Z. Pflanzenphysiol. 56, 122–140 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, W. Untersuchungen über die lichtabhängige Carotinoidsynthese. Planta 74, 263–277 (1967). https://doi.org/10.1007/BF00384847

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384847

Navigation