Skip to main content
Log in

Evidence against the occurrence of adenosine-3′:5′-cyclic monophosphate in higher plants

  • Published:
Planta Aims and scope Submit manuscript

Summary

Previous reports on the incorporation of [14C]adenine into adenosine-3′:5′-cyclic monophosphate (cyclic AMP) in oat (Avena sativa L.) and maize (Zea mays L.) coleoptile sections, chick-pea (Cicer arietinum L.) embryos and barley (Hordeum vulgare L.) aleurone layers were reexamined. Separation of labelled nucleotides on DEAE-Sephadex A 25 showed that a peak of 14C activity, previously considered to be cyclic AMP, is not identical with this compound. Attempts to detect the cyclic nucleotide by means of a highly specific protein-kinase assay in various plant tissues (Nicotiana tabacum L., tissue culture; Catharanthus roseus Don., tissue culture; Lycopersicon esculentum Mill, seedlings; Nicotiana tabacum, pith parenchyma; Avena sativa, coleoptiles) failed even though up to 100 g of plant material was extracted and a number of control experiments were carried out to insure that cyclic AMP, if present in the extracts, could be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cyclic AMP:

adenosine-3′:5′-cyclic monophosphate

DEAE:

diethylaminoethyl

GA3 :

gibberellic acid

IAA:

indole-3-acetic acid

TCA:

trichloroacetic acid

References

  • Amrhein, N.: Zur Frage nach dem Vorkommen, dem Stoffwechsel und der Funktion von cyclischem Adenosin-3′, 5′-monophosphat in höheren Pflanzen. Hoppe-Seylers Z. physiol. Chem. 354, 1165–1166 (1973)

    Google Scholar 

  • Amrhein, N.: Cyclic nucleotide phosphodiesterases in plants. Z Pflanzenphysiol., 72, 249–261 (1974)

    Google Scholar 

  • Amrhein, N., Filner, P.: Adenosine 3′:5′-cyclic monophosphate in Chlamydomonas reinhardtii: isolation and characterization. Proc. nat. Acad. Sci. (Wash.) 70, 1099–1103 (1973)

    Google Scholar 

  • Azhar, S., Krishna Murti, C. R.: Effect of indole-3-acetic acid on the synthesis of cyclic 3′–5′ adenosine phosphate by Bengal gram seeds. Biochem. biophys. Res. Commun. 43, 58–64 (1971)

    Google Scholar 

  • Becker, D., Ziegler, H.: Cyclisches Adenosin-3′:5′-monophosphat in pflanzlichen Leitbahnen? Planta (Berl.) 110, 85–89 (1973)

    Google Scholar 

  • Birnbaumer, L., Pohl, S. L., Michiel, H., Krans, J., Rodbell, M.: The actions of hormones on the adenyl cyclase system. In: Role of cyclic AMP in cell function. Adv. Bioch. Psychopharmacol., vol. 3, p. 185–208 (Greengard P., Costa, E., eds.). New York: Raven Press 1970

    Google Scholar 

  • Brewin, N. J., Northcote, D. H.: Partial purification of a cyclic AMP phosphodiesterase from soybean callus. Isolation of a non-dialysable inhibitor. Biochem. biophys. Acta (Amst.) 320, 104–122 (1973)

    Google Scholar 

  • Brown, E. G., Newton, R. P.: Occurrence of adenosine 3′:5′-cyclic monophosphate in plant tissues. Phytochemistry 12, 2683–2685 (1973)

    Google Scholar 

  • Chrispeels, M. J., Varner J. E.: Gibberellic, acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley aleurone layers. Plant Physiol. 42, 398–406 (1967)

    Google Scholar 

  • Daly, J. W.: Accumulation of cyclic AMP in tissue slices and intact cells: Prelabeling of intracellular polls of ATP. In: Methods in cyclic nucleotide research, p. 255–300 (Chasin, M., ed.). New York: Dekker 1972

    Google Scholar 

  • Filner, P.: Semi-conservative replication of DNA in a higher plant cell. Expt. Cell Res. 39, 33–39 (1965)

    Google Scholar 

  • Fischer, U., Amrhein, N.: Cyclic nucleotide phosphodiesterase of Chlamydomonas reinhardtii. Biochim. biophys. Acta (Amst.) 341, 412–420 (1974)

    Google Scholar 

  • Galsky, A. G., Lippincott, J. A.: Promotion and inhibition of α-amylase-production in barely endosperm by cyclic 3′, 5′-adenosine monophosphate and adenosine diphosphate. Plant Cell Physiol. 10, 607–620 (1969)

    Google Scholar 

  • Gilbert, M. L., Galsky, A. G.: The action of cyclic AMP on GA3 controlled responses. III. Characteristics of barley endosperm acid phosphatase induction by gibberellic acid and cyclic 3′,5′-adenosine monophosphate. Plant Physiol. 13, 867–873 (1972)

    Google Scholar 

  • Gilman, A. G.: A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. nat. Acad. Sci. (Wash.) 67, 305–312 (1970)

    Google Scholar 

  • Goldberg, N. D., Larner, J., Sasko, H., O'Toole A. G.: Enzymic analysis of cyclic 3′,5′-AMP in mammalian tissues and urine. Analyt. Biochem. 28, 523–544 (1969)

    Google Scholar 

  • Hartung, W.: Die Wirkung von cyclischem Adenosin-3′,5′-monophosphat auf das Streckungswachstum von Avena-Coleoptilzylindern. Z. Pflanzenphysiol. 67, 380–382 (1972)

    Google Scholar 

  • Janistyn, B.: Indol-3-essigsäure-induzierte Nukleotidabgabe bei gleichzeitig erhöhter Adenosin-3′:5′-monophosphorsäure, (cAMP) Synthese in Maiskoleoptilzylindern. Z. Naturforsch. 27b, 273–276 (1972a)

    Google Scholar 

  • Janistyn, B.: IES-gesteigerte Adenylcyclase-Aktivität im Homogenat der Maiskoleoptile. Z. Naturforsch. 27b, 872 (1972b)

    Google Scholar 

  • Janistyn, B., Drumm, H.: Light-mediated changes of concentration of c-AMP in mustard seedlings. Naturwissenschaften 59, 218 (1972)

    Google Scholar 

  • Keates, R. A. B.: Evidence that cyclic AMP does not mediate the action of gibberellic acid. Nature (Lond.) 244, 355–357 (1973)

    Google Scholar 

  • Kessler, B.: Hormonal and environmental modulation of gene expression in plant development. In: The, biochemistry of gene expression in higher organisms, p. 333–356 (Pollak, J. K., Lee, J. W., eds.). Dordrecht.Netherlands: Reidl 1972

    Google Scholar 

  • Kessler, B., Kaplan, B.: Cyclic purine nucleotides: induction of gibberellic acid biosynthesis in barley endosperm Physiol. Plantarum (Cph.) 27, 424–431 (1972)

    Google Scholar 

  • Konijn, T. M.: Cyclic AMP as a first messenger. In: Physiology and pharamacology of cyclic AMP. Adv. Cyclic Nucleotide Res., vol. 1, p. 17–31 (Greengard, P., Paoletti, R., Robinson, G. A., eds.). New York: Raven Press 1972

    Google Scholar 

  • Kuo, J.-F., Greengard, P.: An assay method for cyclic AMP and cyclic GMP based upon their abilities to activate cyclic AMP-dependent and cyclic GMP-dependent protein kinases. In: New assay methods for cyclic nucleotides Adv. Cycl. Nucleotide Res., vol. 2, p. 41–50 (Greengard, P., Paoletti, R., Robison, G. A., eds.). New York: Raven Press 1972

    Google Scholar 

  • Lin, P. P.-C.: Cyclic nucleotides in higher plants? In: Adv. Cycl. Nucleotide Res., vol. 4 (Greengard, P., Robison, G. A., eds.). New York: Raven Press 1974 (in press)

    Google Scholar 

  • Lin, P.P.-C., Varner, J. E.: Cyclic nucleotide phosphodiesterase in pea seedlings. Biochim. biophys. Acta (Amst.) 27b, 454–474 (1972)

    Google Scholar 

  • Linsmaier, E. M., Skoog, F.: Organic growth factor requiremnts of tobacco tissue cultures. Physiol. Plantarum (Cph.) 18, 100–127 (1965)

    Google Scholar 

  • Mascarenhas, J. P., Salomon, D.: Rapid cyclic AMP changes in Avena coleoptile sections in response to auxin. 8th Intern. Conf. Plant Growth Subtances, Tokyo, Aug.-Sep. 1973, Abstr. No. 90 (1973)

  • Narayanan, A., Vermeersch, J., Pradet, A.: Dosage enzymatique de l'acide adénosine 3′,5′-monophosphate cyclique dans les, semences de laitue, variété Reine de mai. C. R. Acad. Sci. (Paris) 271, 2406–2407 (1970)

    Google Scholar 

  • Ownby, J. D., Ross, C. W., Bressan., R. A., Key, J. L.: Studies on the presence of cyclic AMP in plants. Plant Physiol. 51, Suppl., 14 (1973)

    Google Scholar 

  • Pastan, I., Perlman, R.: Cyclic adenosine monophosphate, in bacteria. Science 169, 339–344 (1970)

    Google Scholar 

  • Pollard, C. J.: Influence of gibberellic acid on the incorporation of 8-14C adenine into adenosine 3′,5′-cyclic, phosphate in barley aleurone layers. Biochim. biophys Acta (Amst.) 201, 511–512 (1970)

    Google Scholar 

  • Pollard, C. J.: Rapid gibberellin response and the action of adenosine, 3′,5′-monophosphate in aleurone layers. Biochim. biophys. Acta (Amst.) 252, 553–560 (1971)

    Google Scholar 

  • Pradet, A., Raymond, P., Narayanan, A.: Confirmation de la présence de l'AMP cyclic dans les semences de laitue, var. Reine de mai. C. R. Acad. Sci. (Paris) 275, 1987–1988 (1972)

    Google Scholar 

  • Rast, D., Skřivanová, R., Bachofen, R.: Replacement of light by dibutyryl-cAMP and cAMP in betacyanin synthesis. Phytochmistry 12, 2669–2672 (1973)

    Google Scholar 

  • Raymond, P., Narayanan, A., Pradet, A.: Evidence for the presence of 3′,5′-cyclic AMP in plant tissue. Biochem. biophys. Res. Commun. 53, 1115–1120 (1973)

    Google Scholar 

  • Robison, G. A., Butcher, R. W., Sutherland, E. W.: Cyclic AMP. New York: Acad. Press 1971

    Google Scholar 

  • Rubin, R. W., Filner, P.: Adenosine 3′,5′-cyclic monophosphate in Chlamydomonas reinhardtii. Influence of flagellar function and regeneration. J. Cell Biol. 56, 628–635 (1973)

    Google Scholar 

  • Sahyoun, N., Durr, I. F.: Evidence against the presence of 3′,5′-cyclic adenosine monophosphate and relevant enzymes in Lactobacillus plantarum. J. Bact. 112, 421–426 (1972)

    Google Scholar 

  • Salomon, D., Mascarenhas., J. P.: The effect of cyclic 3′,5′-adenosine monophosphate on abscission of Coleus petioles. Z. Pflanzenphysiol. 65, 385–388 (1971a)

    Google Scholar 

  • Salomon, D., Mascarenhas, J. P.: Auxin-induced synthesis of cyclic 3′,5′-adenosine monophosphate in Avena coleoptiles. Life Sci. 10, 879–885 (1971b)

    Google Scholar 

  • Salomon, D., Mascarenhas, J. P.: The time course of synthesis of cyclic AMP in Avena coleoptile sections in response to auxin., (Abstr.) Plant Physiol. 49, Suppl. 30 (1972)

  • Setlow, P.: Inability to detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem. biophys., Res. Commun. 52, 365–372 (1973)

    Google Scholar 

  • Steiner, A. L., Kipnis D. M., Utiger, R., Parker, C. W.: Radioimmunoassay for the measurement of adenosine 3′,5′-cyclic phosphate. Proc. nat. Acad. Sci. (Wash.) 64, 367–373 (1969)

    Google Scholar 

  • Sutherland, E. W.: Studies on the mechanism of hormone action. Science 177, 401–408 (1972)

    Google Scholar 

  • Vandepeute, J., Huffaker R. C., Alvarez, R.: Cyclic nucleotide phosphodiesterase activity in barley seeds. Plant Physiol. 52, 278–288 (1973)

    Google Scholar 

  • Wastila., W. B., Stull, J. T., Mayer, S. E., Walsh, D. A.: Measurement of cyclic 3′,5′-adenosine monophosphate by the activation of skeletal muscle protein kinase. J. biol. Chem. 246, 1996–2003 (1971)

    Google Scholar 

  • Weintraub, R. L., Lawson, V. R.: Mechanism of phytochrome-mediated effects of light on cell growth. VI Intern. Congr. Photobiol., Bochum, Germany, Abstr. (Schenck, G. O., ed.). p. 161 (1972)

  • Wellburn, A. R., Ashley, J. P., Wellburn, F. A. M.: Occurrence and biosynthesis of adenosine 3′,5′-cyclic monophosphate in isolated Avena etioplasts., Biochim. biophys. Acta (Amst.) 320, 363–371 (1973)

    Google Scholar 

  • Wood, H. N., Lin, M. C., Braun, A. C.: The inhibition of plant and animal adenosine 3′,5′-cyclic monophosphate, phosphodiesterase by a cell-division-promoting substance from tissues of higher plant species. Proc. nat. Acad. Sci. (Wash.) 69, 403–406 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amrhein, N. Evidence against the occurrence of adenosine-3′:5′-cyclic monophosphate in higher plants. Planta 118, 241–258 (1974). https://doi.org/10.1007/BF00384780

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384780

Keywords

Navigation