Skip to main content
Log in

Morphological analysis of the neurons in the area of the hypothalamic magnocellular dorsal nucleus of the guinea pig

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In the guinea-pig hypothalamus, a group of enkephalinergic cells forms a well-circumscribed nuclear area called the magnocellular dorsal nucleus (MDN). This nucleus gives rise to a prominent projection to the lateral spetum: the hypothalamo-septal enkephalinergic pathway. In the present study, MDN neurons visualized by Golgi impregnation were subjected to morphological analysis in order to define the potential segregation of cellular types within the MDN. This study was complemented by additional observations of MDN neurons intracellularly injected by Lucifer yellow (LY) or horseradish peroxidase (HRP) during the in vitro incubation of hypothalamic slices. The following results were obtained from the analysis of 200 neurons: 163 Golgi-impregnated cells plus 37 injected cells (LY=14; HRP=23). Thirteen HRP-injected cells were precisely located in the MDN and 10 were located in the perifornical area surrounding the MDN. Four different cellular types were identified. Type-I neurons (41%) displayed a globular perikaryon, a variable number of primary dendrites that were poorly ramified, no preferential orientation, and an axon emerging from the perikaryon. Type-II neurons (30.5%) had a triangular perikaryon, three well-ramified primary dendrites, an orientation perpendicular to the third ventricle, and an axon emerging from the perikaryon. Type-III neurons (22%) exhibited a spindle-shaped perikaryon, two opposed well-ramified primary dendrites, an orientation perpendicular to the third ventricle, and an axon emerging from a primary dendrite. Type-IV neurons (6.5%), showed a globular perikaryon, a variable number of primary dendrites, poorly ramified dendrites, an orientation parallel to the third ventricle, and an axon whose orientation could not be identified. Neurons labeled after intracellular injection belonged to the first three cellular types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JC (1977) Technical consideration on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2: 141–145

    Article  PubMed  Google Scholar 

  • Amthor FR (1984) A modified slurry beveler for HRP-filled intracellular micropipettes. J Electrophysiol Tech 11: 79–86

    Google Scholar 

  • Barry J (1972) Etude neurohistologique des cellules réticulaires de l'hypothalamus des Mammifères. C R Acad Sci III 275: 1163–1165

    Google Scholar 

  • Barry J (1975) Essai de classification, en technique de Golgi, des diverses catégories de neurones du noyau paraventriculaire chez la souris. C R Soc Biol (Paris) 4: 978–980

    Google Scholar 

  • Beauvillain JC, Tramu G, Croix D (1980) Electron microscopic localization of enkephalin in the median eminence and the adenohypophysis of the guinea pig. Neuroscience 5: 1705–1716

    Article  Google Scholar 

  • Beauvillain JC, Tramu G, Poulain P (1982) Enkephalin-immunoreactive neurons in the guinea-pig hypothalamus. An ultrastructural study. Cell Tissue Res 224: 1–13

    Article  Google Scholar 

  • Beauvillain JC, Mitchell V, Tramu G, Mazzuca M (1988) GABA axon terminals in synaptic contacts with enkephalin neurons in the hypothalamus of the guinea pig. Demonstration by double immunocytochemistry. Brain Res 443: 315–320

    PubMed  Google Scholar 

  • Bishop GA, King JS (1982) Intracellular horseradish peroxidase injection for tracing neural connections. In: Mesulam MM (ed) Tracing neural connections with horseradish peroxidase. Ibro handbook series: methods in the neurosciences. Wiley, Chichester New York Brisbane, pp 185–247

    Google Scholar 

  • Bleier R (1983) The hypothalamus of the guinea pig: a cytoarchitectonic atlas. University of Wisconsin Press, Madison, Wisconsin

    Google Scholar 

  • Brown AG, Fyffe REW (1984) Intracellular staining of mammalian neurons. Treherne JE, Rubery PH (eds) Biological techniques series. Academic Press, London

    Google Scholar 

  • Carette B, Poulain P, Doutrelant O (1990) GABA acts throught GABAa receptors on neurons of the hypothalamic magnocellular dorsal nucleus in the guinea pig: in vitro intracellular study. C R Acad Sci III 310: 645–650

    PubMed  Google Scholar 

  • Ciofi P, Tramu G (1990) Distribution of cholecystokinin-like-immunoreactive neurons in the guinea-pig forebrain. J Comp Neurol 300: 82–112

    PubMed  Google Scholar 

  • Dudek FE, Tasker JG, Wuarin JP (1989) Intrinsic and synaptic mechanisms of hypothalamic neurons studies with slices and explant preparations. J Neurosci Methods 28: 59–69

    Article  PubMed  Google Scholar 

  • Finley JCW, Maderdrut JL, Petrusz P (1981) The immunocytochemical localization of enkephalin in the central nervous system of the rat. J Comp Neurol 198: 541–565

    PubMed  Google Scholar 

  • Frontera J (1964) Improved Golgi-type impregnation of nerve cells (abstract). Anat Rec 148: 371–372

    Google Scholar 

  • Grace AA, Llinás R (1985) Morphological artefacts induced in intracellularly stained neurons by dehydratation: circumvention using rapid dimethylsulfoxide cleaning. Neuroscience 16: 461–475

    Article  PubMed  Google Scholar 

  • Gutnick MJ, Lobel-Yaakov R, Rimon G (1985) Incidence of neuronal dye-coupling in neocortical slices depends on the plane of section. Neuroscience 15: 659–666

    Article  PubMed  Google Scholar 

  • Hatton GI, Cobbett P, Salm AK (1985) Extranuclear axon collaterals of paraventricular neurons in the rat hypothalamus: intracellular staining, immunocytochemistry and electrophysiology. Brain Res Bull 14: 123–132

    Article  PubMed  Google Scholar 

  • Hökfelt T, Efendic S, Johansson O, Luft R, Arimura A (1974) Immunohistochemical localization of somatostatin (growth hormone release-inhibiting factor) in the guinea-pig brain. Brain Res 80: 165–169

    Article  PubMed  Google Scholar 

  • Hökfelt T, Elde R, Johansson O, Terenius L, Stein L (1977) The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system. Neurosci Lett 5: 25–31

    Article  Google Scholar 

  • Krukoff TL, Calaresu FR (1984) A group of neurons highly reactive for enkephalins in the rat hypothalamus. Peptides 5: 931–936

    Article  PubMed  Google Scholar 

  • Lefranc G (1966) Etude neurohistologique des noyaux supraoptique et paraventriculaire chez le cobaye et le chat par la technique de triple imprégnation de Golgi. C R Acad Sci III 263: 976–979

    Google Scholar 

  • Leontovich TA, Zhukova GP (1963) The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of Carnivora. J Comp Neurol 121: 347–379

    PubMed  Google Scholar 

  • MacMullen NT, Almli CR (1981) Cell-types within the medial forebrain bundle: a Golgi study of preoptic and hypothalamic neurons in the rat. Am J Anat 161: 323–340

    PubMed  Google Scholar 

  • Merchenthaler I (1991) Co-localization of enkephalin and TRH in perifornical neurons of the rat hypothalamus that project to the lateral septum. Brain Res 544: 177–180

    Article  PubMed  Google Scholar 

  • Merchenthaler I, Maderdrut JL, Altschuler RA, Petrusz P (1986) Immunocytochemical localization of proenkephalin-derived peptides in the central nervous system of the rat. Neuroscience 17: 325–348

    Article  PubMed  Google Scholar 

  • Millhouse OE (1969) A Golgi study of the descending medial forebrain bundle. Brain Res 15: 341–363

    Article  PubMed  Google Scholar 

  • Millhouse OE (1979) A Golgi anatomy of the rodent hypothalamus. In: Morgane PJ, Panksepp J (eds) Anatomy of hypothalamus Handbook of the hypothalamus, vol 1. Dekker, New York Basel, pp 221–264

    Google Scholar 

  • Millhouse OE (1981) The Golgi methods. In: Heimer L, Robarts MJ (eds) Neuroanatomical tract-tracing methods. Plenum Press, New York London, pp 311–344

    Google Scholar 

  • Minami T, Oomura Y, Sugimori M (1986) Ionic basis for the electroresponsiveness of guinea-pig ventromedial hypothalamic neurons in vitro. J Physiol (Lond) 380: 145–156

    Google Scholar 

  • Mitchell V, Beauvillain JC, Poulain P, Mazzuca M (1988) Catecholamine innervation of enkephalinergic neurons in guinea-pig hypothalamus: demonstration by an in vitro autoradiographic technique combined with a postembedding immunogold method. J Histochem Cytochem 36: 533–542

    PubMed  Google Scholar 

  • Mitchell V, Beauvillain JC, Mazzuca M (1992) Combination of immunocytochemistry and in situ hybridization in the same semi-thin sections: detection of met-enkephalin and pro-enkephalin mRNA in the hypothalamic magnocellular dorsal nucleus of the guinea pig. J Histochem Cytochem 40: 581–592

    PubMed  Google Scholar 

  • Mühlen K aus der (1966) The hypothalamus of the guinea pig. Kargel, Basel New York

    Google Scholar 

  • Onteniente B, Menetrey D, Arai R, Calas A (1989) Origin of the met-enkephalinergic innervation of the lateral septum in the rat. Cell Tissue Res 256: 585–592

    PubMed  Google Scholar 

  • Poulain P (1974) L'hypothalamus et le septum du cobaye de 400 grammes en coordonnées stéréotaxiques. Arch Anat Micros Morphol Exp 63: 37–50

    Google Scholar 

  • Poulain P (1983) Hypothalamic projection to the lateral septum in the guinea pig. An HRP study. Brain Res Bull 10: 309–313

    Article  PubMed  Google Scholar 

  • Poulain P (1986) Properties of antidromically identified neurons in the enkephalinergic magnocellular dorsal nucleus of the guinea-pig hypothalamus. Brain Res 362: 74–82

    Article  PubMed  Google Scholar 

  • Poulain P, Carette B (1987) Low-threshold calcium spikes in hypothalamic neurons recorded near the paraventricular nucleus in vitro. Brain Res Bull 19: 453–460

    Article  PubMed  Google Scholar 

  • Poulain P, Martin-Bouyer L, Beauvillain JC, Tramu G (1984) Study of the efferent connections of the enkephalinergic magnocellular dorsal nucleus in the guinea-pig hypothalamus using lesions, retrograde tracing and immunohistochemistry: evidence for a projection to the lateral septum. Neuroscience 11: 331–343

    Article  PubMed  Google Scholar 

  • Ramon-Moliner E (1957) A chlorate-formaldehyde modification of the Golgi method. Stain Technol 32: 105–116

    PubMed  Google Scholar 

  • Ramon-Moliner E, Nauta WJH (1966) The isodendritic core of the brainstem. J Comp Neurol 126: 311–336

    PubMed  Google Scholar 

  • Sakanaka M, Magari S (1989) Reassessment of enkephalin (ENK)-containing afferents to the rat lateral septum with reference to the fine structures of septal ENK fibers. Brain Res 479: 205–216

    Article  PubMed  Google Scholar 

  • Sakanaka M, Senba E, Shiosaka S, Takatsuki K, Inagaki S, Takagi H, Kawai Y, Hara Y, Tohyama M (1982) Evidence for the existence of an enkephalin-containing pathway from the area just ventrolateral to the anterior hypothalamic nucleus to the lateral septal area of the rat. Brain Res 239: 240–244

    Article  PubMed  Google Scholar 

  • Sar M, Stumpf WE, Miller RJ, Chang KJ, Cuatrecasas P (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182: 17–38

    PubMed  Google Scholar 

  • Shimono M, Tsuji N (1987) Study of the selectivity of the impregnation of neurons by the Golgi method. J Comp Neurol 259: 122–130

    PubMed  Google Scholar 

  • Somogyi P, Smith AD (1979) Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined Golgi-staining and horseradish peroxidase transport procedure at both light and electron microscopic levels. Brain Res 178: 3–15

    Article  PubMed  Google Scholar 

  • Staiger JF, Nürnberger F (1989) Pattern of afferents to the lateral septum in the guinea pig. Cell Tissue Res 257: 471–490

    PubMed  Google Scholar 

  • Stengaard-Pedersen K, Larsson LI (1981) Comparative immunocytochemical localization of putative opioid ligands in the central nervous system. Histochemistry 73: 89–114

    PubMed  Google Scholar 

  • Steward WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14: 741–759

    Article  PubMed  Google Scholar 

  • Tramu G, Beauvillain JC, Croix D, Leonardelli J (1981) Comparative immunocytochemical localization of enkephalin and somatostatin in the median eminence, hypothalamus and adjacent areas of the guinea-pig brain. Brain Res 215: 235–255

    Article  PubMed  Google Scholar 

  • Wamsley JK, Young WS, Kuhar MJ (1980) Immunohistochemical localization of enkephalin in rat forebrain. Brain Res 190: 153–174

    PubMed  Google Scholar 

  • Yamamoto C (1973) Propagation of after discharges elicited in thin brain sections in artificial media. Exp Neurol 40: 183–188

    PubMed  Google Scholar 

  • Yang QZ, Hatton GI (1987) Dye coupling among supraoptic nucleus neurons without dendritic damage: differential incidence in nursing mother and virgin rats. Brain Res Bull 19: 559–565

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doutrelant, O., Martin-Bouyer, L. & Poulain, P. Morphological analysis of the neurons in the area of the hypothalamic magnocellular dorsal nucleus of the guinea pig. Cell Tissue Res 269, 107–117 (1992). https://doi.org/10.1007/BF00384731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384731

Key words

Navigation