Skip to main content
Log in

Widespread tissue distribution of rabbit calreticulin, a non-muscle functional analogue of calsequestrin

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Calreticulin was identified in a variety of rabbit tissues by Western blot analysis. Indirect immunofluorescence studies on cultured cells or frozen sections from the corresponding tissues revealed that the protein was distributed to the endoplasmic reticulum or sarcoplasmic reticulum. Calreticulin was found to be an abundant calcium-binding protein in non-muscle and smooth muscle cells and a constitutent calcium-binding protein in cardiac and skeletal muscle. From the immunoblot data, calreticulin may exist as an isoform in rabbit neural retina. The present study establishes the ubiquity of calreticulin in intracellular calcium binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266:21458–21465

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breemen C van, Saida K (1989) Cellular mechanisms regulating [Ca2+]i smooth muscle. Annu Rev Physiol 51:315–329

    Article  PubMed  Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    Article  PubMed  Google Scholar 

  • Fleischer S, Inui M (1989) Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Biophys Chem 18:333–364

    Article  PubMed  Google Scholar 

  • Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reithmeier RAF, MacLennan DH (1987) Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci USA 84:1167–1171

    PubMed  Google Scholar 

  • Fliegel L, Burns K, Opas M, Michalak M (1989a) The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin. Biochim Biophys Acta 982:1–8

    PubMed  Google Scholar 

  • Fliegel L, Burns K, MacLennan DH, Reithmeier RAF, Michalak M (1989b) Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264:21522–21528

    PubMed  Google Scholar 

  • Hashimoto S, Bruno B, Lew DP, Pozzan T, Volpe P, Meldolesi J (1988) Immunocytochemistry of calciosomes in liver and pancreas. J Cell Biol 107:2523–2531

    Article  PubMed  Google Scholar 

  • Krause K-H, Chou M, Thomas MA, Sjolund RD, Campbell KP (1989) Plant cells contain calsequestrin. J Biol Chem 264:4269–4272

    PubMed  Google Scholar 

  • Kretsinger RH, Nockolds CE (1973) Carp muscle calcium binding protein II. Structure determination and general description. J Biol Chem 248:3313–3326

    PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Leffert HL, Koch KS, Moran T, Williams M (1979) Liver cells. In: Jakoby WB, Pastan IH (eds) Methods in enzymology, vol LVIII. Academic Press, New York, pp 536–544

    Google Scholar 

  • MacLennan DH, Yip CC, Iles GH, Seeman P (1972) Isolation of sarcoplasmic reticulum proteins. Cold Spring Harbor Symp Quant Biol 37:469–477

    Google Scholar 

  • MacLennan DH, Campbell KP, Reithmeier RAF (1983) Calsequestrin. In: Cheung WY (ed) Calcium and cell function, vol 4. Academic Press, New York, pp 151–173

    Google Scholar 

  • McPherson PS, Campbell KP (1990) Solubilization and biochemical characterization of the high affinity [3H]ryanodine receptor from rabbit brain membranes. J Biol Chem 265:18454–18460

    PubMed  Google Scholar 

  • McPherson PS, Kim Y-K, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25

    Article  PubMed  Google Scholar 

  • Meldolesi J, Madeddu L, Pozzan T (1990) Intracellular Ca2+ storage organelles in non-muscle cells: heterogeneity and functional assignment. Biochim Biophys Acta 1055:130–140

    Article  PubMed  Google Scholar 

  • Michalak M, MacLennan DH (1980) Assembly of the sarcoplasmic reticulum. Biosynthesis of the high affinity calcium binding protein in rat skeletal muscle cell cultures. J Biol Chem 255:1327–1334

    PubMed  Google Scholar 

  • Michalak M, Campbell KP, MacLennan DH (1980) Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes. J Biol Chem 255:1317–1326

    PubMed  Google Scholar 

  • Michalak M, Baksh S, Burns K, Milner RE, Opas M (1990) Calreticulin, a Ca2+-binding protein of sarcoplasmic and endoplasmic reticulum membranes. In: Marechal G, Carraro U (eds) Muscle and motility, vol 2. Intercept, Andover, UK, pp 15–21

    Google Scholar 

  • Michalak M, Baksh S, Opas M (1991) Identification and immunolocalization of calreticulin in pancreatic cells: no evidence for “calciosomes”. Exp Cell Res 197:91–99

    PubMed  Google Scholar 

  • Mignery GA, Südhof TC, Takei K, De Camilli P (1989) Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195

    Article  PubMed  Google Scholar 

  • Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JE, Opas M, Michalak M (1991) Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 266:7155–7165

    PubMed  Google Scholar 

  • Opas M, Dziak E (1988) Effects of substrata and method of tissue dissociation on adhesion, cytoskeleton, and growth of chick retinal pigmented epithelium in vitro. In Vitro Cell Dev Biol 24:885–892

    PubMed  Google Scholar 

  • Opas M, Dziak E, Fliegel L, Michalak M (1991) Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of non muscle cells. J Cell Physiol 149:160–171

    PubMed  Google Scholar 

  • Ostwald TJ, MacLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249:974–979

    PubMed  Google Scholar 

  • Pelham HRB (1989) Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5:1–23

    PubMed  Google Scholar 

  • Perrin D, Sonnichsen B, Soling H, Nguyen-Van P (1991) Purkinje cells of rat and chicken cerebellum contain calreticulin. FEBS Lett 294:47–50

    Article  PubMed  Google Scholar 

  • Ross CA, Meldolesi J, Milner TA, Satoh T, Supattapone S, Snyder SH (1989) Inositol 1,4,5-triphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339:468–470

    Article  PubMed  Google Scholar 

  • Rossier MF, Putney JW Jr (1991) The identity of the calcium-storing, inositol 1,4,5-triphosphate-sensitive organelle in nonmuscle cells: calciosome, endoplasmic reticulum...or both? Trends Neurosci 14:310–314

    Article  PubMed  Google Scholar 

  • Ryan US, Clements E, Habliston D, Ryan JW (1978) Isolation and culture of pulmonary artery endothelial cells. Tissue Cell 10:535–554

    PubMed  Google Scholar 

  • Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, Snyder SH, Meldolesi J (1990) The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 111:615–624

    Article  PubMed  Google Scholar 

  • Scott BT, Simmerman HKB, Collins JH, Nadal-Ginard B, Jones LR (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263:8958–8964

    PubMed  Google Scholar 

  • Slupsky JR, Ohnishi M, Carpenter MR, Reithmeier RAF (1987) Characterization of cardiac calsequestrin. Biochemistry 26:6539–6544

    PubMed  Google Scholar 

  • Somlyo AP, Himpens B (1989) Cell calcium and its regulation in smooth muscle. FASEB J 3:2266–2276

    PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    PubMed  Google Scholar 

  • Treves S, De Mattei M, Lanfredi M, Villa A, Green NM, MacLennan DH, Meldolesi J, Pozzan T (1990) Calreticulin is a candidate for a clasequestrin-like function in Ca2+-storage compartments (calciosomes) of liver and brain. Biochem J 271:473–480

    PubMed  Google Scholar 

  • Treves S, Zorzato F, Chiozzi P, Melandri P, Volpe P, Pozzan T (1991) Frog brain expresses a 60 kDa Ca2+ binding protein similar to mammalian calreticulin. Biochem Biophys Res Comm 175:444–450

    PubMed  Google Scholar 

  • Tsien RW, Tsien RY (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6:715–760

    PubMed  Google Scholar 

  • Van PN, Peter F, Söling H-D (1989) Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem 264:17494–17501

    PubMed  Google Scholar 

  • Vaux D, Tooze Y, Fuller S (1990) Identification by anti-idiotype antibodies of an intracellular membrane protein that recognizes a mammalian endoplasmic reticulum retention signal. Nature 345:495–502

    Article  PubMed  Google Scholar 

  • Villa A, Podini P, Clegg DO, Pozzan T, Meldolesi J (1991) Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein. Bip. J Cell Biol 113:779–791

    Article  Google Scholar 

  • Virtanen I, Ekblom P, Laurila P (1980) Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells. J Cell Biol 85:429–434

    Article  PubMed  Google Scholar 

  • Volpe P, Krause K-H, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP (1988) “Calciosome”, a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sci USA 85:1091–1095

    PubMed  Google Scholar 

  • Volpe P, Alderson-Lang BH, Madeddu L, Damiani E, Collins JH, Margreth A (1990) Calsequestrin, a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum. Neuron 5:713–721

    Article  PubMed  Google Scholar 

  • Waisman DM, Salimath BP, Anderson MJ (1985) Isolation and characterization of CAB-63, a novel calcium-binding protein. J Biol Chem 260:1652–1660

    PubMed  Google Scholar 

  • Walton PD, Airey JA, Sutko JL, Beck CF, Mignery GA, Sudhof TC, Deerinck TJ, Ellisman MH (1991) Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Cell Biol 113:1145–1157

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tharin, S., Dziak, E., Michalak, M. et al. Widespread tissue distribution of rabbit calreticulin, a non-muscle functional analogue of calsequestrin. Cell Tissue Res 269, 29–37 (1992). https://doi.org/10.1007/BF00384723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384723

Key words

Navigation