Skip to main content
Log in

Respiration of Cytherissa lacustris (Ostracoda) at different temperatures and its tolerance towards temperature and oxygen concentration

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The ostracod species Cytherissa lacustris was investigated with respect to its temperature and oxygen tolerance limits. In laboratory experiments the tolerance limits were found to be much wider than expected from field data. Hatching of first instars was observed in cultures up to 20° C. The tolerance limit for oxygen concentrations was less than 1 mg O2·l-1 at 10° C and 20 h exposure. The distribution pattern of C. lacustris along a depth profile in lake Attersee showed a maximum density between 10 and 20 m depth coinciding with temperatures between 4 and 15°C throughout the year. The size dependence of respiration rates of well adapted C. lacustris is within the normal range of small metazoans. Its weight specific rates of oxygen uptake indicate an adaptation plateau in the range between 10 and 15°C. Possible reasons and advantages of such an adaptation for C. lacustris are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borner L (1922) Die Bodenfauna des St. Moritzersees; eine monographische Studie. Arch Hydrobiol u. Planktonkd 1:209–281

    Google Scholar 

  • Danielopol DL, Orellana CP, Terrat M (in prep.) The distribution of Cytherissa lacustris in Mondsee, a prealpine lake in Austria

  • Delorme LD (1969) Ostracodes as Quaternary paleoecological indicators. Can J Earth Sci 6:1471–1476

    Google Scholar 

  • Delorme LD (1978) Distribution of freshwater ostracodes in lake Erie. J Great Lakes Res 4:216–220

    Google Scholar 

  • Delorme LD (1982) Lake Erie oxygen; the prehistoric record. Can J Fish Aquat Sci 39:1021–1029

    Google Scholar 

  • Grant IF, Egan EA, Alexander M (1983) Measurements of rates of grazing of the ostracode Cyprinotus carolinensis on bluegreen algae. Hydrobiologia 106:199–208

    Google Scholar 

  • Green JD, Chapman MA (1977) Temperature effects on oxygen consumption by the copepod Boeckella dilatata. New Zealand J Mar Freshwater Res 11:375–382

    Google Scholar 

  • Hagerman L (1969) Respiration, anaerobic survival and dial locomatory periodicity in Hirschmannia viridis Müller (Ostracoda). Oikos 20:382–391

    Google Scholar 

  • Herman PMJ, Heip C (1982) Growth and respiration of Cyprodeis torosa Jones 1850 (Crustacea, Ostracoda). Oecologia (Berlin) 54:300–303

    Google Scholar 

  • Jäger P (1974) Limnologische Untersuchungen im Wallersee mit besonderer Berücksichtigung der Ostrakodenpopulation. Diss Univ Graz, pp 95

  • Kelekowski RZ (1971) Cartesian diver microrespirometry for aquatic animals. Pol Arch Hydrobiol 18:93–114

    Google Scholar 

  • Kempf EK, Sharf B (1980) Lebende und fossile Muschelkrebse (Crustacea, Ostrakoda) vom Laacher-See. Mitteil Pollichia 68:205–236

    Google Scholar 

  • Klie W (1938) Ostracoda, Muschelkrebse. In: Dahl (ed), Die Tierwelt Deutschlands und der angrenzenden Meeresteile, 34, Teil, Krebstiere oder Crustaea III. Gustav Fischer Verlag, Jena, pp 230

    Google Scholar 

  • Lasserre P (1971) Données ecophysiologiques sur la repartition des Oligochètes marins meiobenthiques. Incidence des parametres slinité, température sur le metabolisme respiratoire de deux espéces euryhalines du genre Marionina Michaelsen 1889 (Enchythraeidae, Oligochaeta). Vie et Milieu, Suppl 22:523–540

    Google Scholar 

  • Linderstrøm-Lang K (1937) Principles of the cartesian diver applied to gasometric technique. Nature 140:pp 108

    Google Scholar 

  • Löffler H (1969) Recent and subfossil distribution of Cytherissa lacustris (Ostracoda) in Lake Constance. Mitt Int Ver Limnol 17:240–251

    Google Scholar 

  • Löffler H (1971) Daten zur subfossilen und lebenden Ostrakodenfauna in Wörthersee und Klopeinersee. Carinthia II, Sonderheft 31:79–89

    Google Scholar 

  • Löffler H (1972) Arbeitsbericht der limnologischen Exkursion Klopeinersee 1971. Carinthia II, 162/82:235–274

    Google Scholar 

  • Newell RC (1970) Biology of intertidal animals. Paul Elek Ltd London, pp 555

    Google Scholar 

  • Newrkla P (1982 a) Methods for measuring benthic community respiration rates. pp 274–284 In: Gnaiger E, Förstner H (eds) Polarographic oxygen sensors, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Newrkla P (1982 b) Annual cycles of benthic community oxygen uptake in a deep oligotrophic lake (Attersee, Austria). Hydrobiologia 94:139–147

    Google Scholar 

  • Peper H (1981) Experimentelle Bestimmungen von Respirationsraten an Ostrakoden der Ostsee. Dipl Arb Biol Univ Hamburg pp 71

  • Powell S (1976) Einige Aspekte der Beziehung zwischen Sedimenteigenschaften und der Fortbewegung benthischer Süßwasserostrakoden, mit spezieller Berücksichtigung der Cytherissa lacustris (Sars). Diss Univ Wien, pp 122

  • Precht H, Christopherson J, Hensel H, Larcher W (1973) Temperature and live. Springer, Berlin Göttingen Heidelberg, pp 514

    Google Scholar 

  • Prosser CL (1973) Comparative animal physiology (3rd ed) WB Saunders, Philadelphia, pp 356

    Google Scholar 

  • Salonen K (1979) A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol Oceanogr 24:177–183

    Google Scholar 

  • Salonen K, Sarvala J (1980) The effect of different preservation methods on the carbon content of Megacyclops gigas. Hydrobiologia 72:281–285

    Google Scholar 

  • Schmassmann W (1924) Die Bodenfauna hochalpiner Seen. Arch Hydrobiologie Suppl 3:1–106

    Google Scholar 

  • Scholander PF, Flagg W, Walters V, Jrving L (1953) Climatic adaptation in arctic and tropical poikilotherma. Physiol Zool 26:67–92

    Google Scholar 

  • Vernberg FJ (1959) Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca; Oxygen consumption of whole organisms. Biol Bull 117:163–184

    Google Scholar 

  • Wieser W (1973) Effects of temperature on ectothermic organisms, pp 1–23. In: Wieser W (ed) Springer, Berlin Heidelberg New York, pp 298

    Google Scholar 

  • Zeuthen E (1947) Body size and metabolic rate in the animal kingdom with special regard to the marine microfauna. C. R. Lab Carlsberg, Sér Chim 26:17–161

    Google Scholar 

  • Zeuthen E (1950) Cartesian diver respirometer. Biol Bull 98:139–143

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newrkla, P. Respiration of Cytherissa lacustris (Ostracoda) at different temperatures and its tolerance towards temperature and oxygen concentration. Oecologia 67, 250–254 (1985). https://doi.org/10.1007/BF00384294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384294

Keywords

Navigation