Oecologia

, Volume 62, Issue 3, pp 325–336

Foraging in male bumblebees (Bombus lucorum L.): maximizing energy or minimizing water load?

  • Andreas Bertsch
Original Papers

Summary

The O2, CO2, and H2O exchange of single flying male bumblebees (Bombus lucorum and B. terrestris) were measured simultaneously. A respiratory quotient RQ=1 was found for all activities investigated (torpor-flight). The dependence of respiratory CO2 production in flight on body-weight was measured: for a 220-mg male bumblebee it amounts to 24.5 mg CO2/h (=56.4 ml O2/g·h). The corresponding evaporative water loss amounts to 6 mg H2O/h. Males tranferred to a climatic test chamber and conditioned to artificial flower feeders started to fly, after a few days of acclimatization, in typical scent-marked flight-paths. The daily pattern of flight activity was recorded: the mean total time in flight amounts to 244 min, and the corresponding daily flight length is about 17 km. At 20°C and 50% relative humidity (RH) a daily uptake of 180 μl (≙ 220mg) of 50% sugar solution was measured, equal to the mean body weight of the male bumblebees. Since the body weight remains constant on consecutive days a 24-h energy- and water-budget could be calculated. The energy-budget is balanced; the activities observed can be fuelled with the sugar available. About 70% of the energy is used for the 4 h of flight activity. With the daily nectar volume 110 mg of water is ingested; in the oxidation of 110 mg sugar, 66 mg of metabolic water is produced and 40 mg water is dissipated by the evaporative water-loss. Thus, to have a balanced water-budget, 136 mg of water must be voided in 24 h, which equals the total body-water of the bumblebees. Nectar is a nutrient of high water content which not only provides the sugar necessary for activity but also, in most circumstances, an excess of water. The effect of this high water load in limiting daily activity is discussed and compared with the water- and osmoregulation of hummingbirds. The strategy of maximizing energy for a male bumblebee must be one of minimizing water load.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awram WJ (1970) Flight route behaviour of bumblebees. Ph.D. thesis, University of LondonGoogle Scholar
  2. Baker HG, Baker I (1982) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New YorkGoogle Scholar
  3. Bartholomew GA, Casey TM (1977) Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J Thermal Biol 2: 173–176CrossRefGoogle Scholar
  4. Bartholomew GA, Casey TM (1978) Oxygen consumption of moths during rest, pre-flight warm-up, and flight in relation to body size and wing morphology. J Exp Biol 76: 11–25Google Scholar
  5. Berger M, Hart JS (1972) Die Atmung beim Kolibri Amazilia fimbriata während des Schwirrfluges bei verschiedenen Umgebungstemperaturen. J Comp Physiol 81: 363–380Google Scholar
  6. Bergström G, Kullenberg B, Ställberg-Stenhagen S, Stenhangen E (1967) Studies on natural odoriferous compounds. II. Identification of a 2,3-dihydrofarnesol as the main component of the marking perfume of male bumble bees of the species Bombus terrestris L. Arkiv Kemi 28: 453–469Google Scholar
  7. Bergström G, Svensson BG, Appelgren M, Groth I (1981) Complexity of bumble bee marking pheromones: Biochemical, ecological and systematical interpretations. In: Howse PE, Clement JL (eds), Biosystematics of social insects. Academic Press, London and New YorkGoogle Scholar
  8. Berridge MJ (1970) Osmoregulation in terrestrial arthropods. In: Florkin M, Scheer BT (eds), Chemical Zoology Vol 5: 287–319. Academic Press, New York and LondonGoogle Scholar
  9. Bertsch A (1983) Nectar production of Epilobium angustifolium L. at different air humidities; nectar sugar in individual flowers and the optimal foraging theory. Oecologia 59: 40–48Google Scholar
  10. Bringer B (1973) Territorial flight of bumblebee males in coniferous forest on the northernmost part of the island Öland. Zoon Suppl 1: 15–22Google Scholar
  11. Büdel A (1948) Der Wasserdampfhaushalt im Bienenstock. Z Vergl Physiol 31: 249–273CrossRefGoogle Scholar
  12. Calder WA, Hiebert SM (1983) Nectar feeding, diuresis, and electrolyte replacement of hummingbirds. Physiol Zool 56: 325–334Google Scholar
  13. Carpenter RE (1969) Structure and function of the kidney and the water balance of desert bats. Physiol Zool 42: 288–302Google Scholar
  14. Chappell MA (1982) Temperature regulation of carpenter bees (Xylocopa californica) foraging in the Colorado Desert of southern California. Physiol Zool 55: 267–280Google Scholar
  15. Church NS (1960) Heat loss and the body temperatures of flying insects. I. Heat loss by evaporation of water from the body. J Exp Biol 37: 171–185Google Scholar
  16. CIBA-Geigy (1977) Wissenschaftliche Tabellen Geigy. 8. Aufl Herausgegeben CIBA-Geigy AG BaselGoogle Scholar
  17. Dawson WR (1958) Relation of oxygen consumption and water loss to temperature in the cardinal. Physiol Zool 31: 37–48Google Scholar
  18. Edney EB (1977) Water balance in land arthropods. Zoophysiology and Ecology Vol 9 Springer Berlin Heidelberg New YorkGoogle Scholar
  19. Florkin M, Jeuniaux C (1974) Hemolymph composition. In: Rockstein N (ed), The physiology of insecta Vol V: 255–307. Academic Press New York and LondonGoogle Scholar
  20. Frank A (1941) Eigenartige Flugbahnen bei Hummelmännchen. Z Vergl Physiol 28: 467–484CrossRefGoogle Scholar
  21. Freeman RB (1968) Charles Darwin on the routes of male humble bees. Bull British Museum (Nat Hist) Hist Ser Vol 3 No 6: 179–189Google Scholar
  22. Haas A (1949) Arttypische Flugbahnen von Hummelmännchen. Z Vergl Physiol 31: 281–307CrossRefGoogle Scholar
  23. Haas A (1952) Die Mandibeldrüse als Duftorgan bei einigen Hymenopteren. Naturwissenschaften 39: 484Google Scholar
  24. Haas A (1968) Vergleichende Verhaltensstudien zum Paarungsschwarm der Hummeln (Bombus) und Schmarotzerhummeln (Psithyrus) I. Teil. Z Tierpsychol 24: 257–277Google Scholar
  25. Heinrich B (1972) Energetics of temperature regulation and foraging in a bumblebee. J Comp Physiol 77: 49–64Google Scholar
  26. Heinrich B (1975) Thermoregulation in bumblebees. Energetics of warm-up and free flight. J Comp Physiol 96: 155–166Google Scholar
  27. Heinrich B (1979) Bumblebee economics. Harvard University Press Cambridge and LondonGoogle Scholar
  28. Heinrich B (1980) Mechanisms of body temperature regulation in honeybees, Apis mellifera. II. Regulation of the thoracic temperature at high air temperatures. J Exp Biol 85: 73–87Google Scholar
  29. Heinrich B (1983) Do bumblebees forage optimally, and does it matter? Amer Zool 23: 272–281Google Scholar
  30. Hiebert SM, Calder WA (1983) Sodium, potassium and chloride in floral nectars: energy-free contributions to refractive index and salt balance. Ecology 64: 399–402Google Scholar
  31. Hodges CM (1981) Optimal foraging in bumblebees: hunting by expectation. Anim Behav 29: 1166–1171Google Scholar
  32. Hodges CM, Wolf LL (1981) Optimal foraging in bumblebees: Why nectar is left behind in flowers? Behav Ecol Sociobiol 9: 41–44CrossRefGoogle Scholar
  33. Hunsaker WG (1974) Blood electrolytes: Birds. In: Altman PL, Dittmer DS (eds), Biology data book. Vol III: 1794–1799 2ed. Fed Am Soc Exp Biol Bethesda MarylandGoogle Scholar
  34. Krüger E (1951) Über die Bahnflüge der Männchen der Gattungen Bombus und Psithyrus. Z Tierpsych 8: 61–75Google Scholar
  35. Kümmel G, Zerbst-Boroffka I (1974) Elektronenmikroskopische und physiologische Untersuchungen an den Rektalpolstern von Apis mellifera. Cytobiol 9: 432–459Google Scholar
  36. Kullenberg B (1956) Field experiments with chemical sexual attractants on Aculeate Hymenoptera males. Zool Bidrag Uppsala 31: 253–350Google Scholar
  37. Kullenberg B, Bergström G, Bringer B, Carlberg B, Cederberg B (1973) Observations on scent marking by Bombus Latr. and Psithyris Lep. males and localization of site of production of the secretion. Zoon Suppl 1: 23–29Google Scholar
  38. Lasiewski RC (1964) Body temperature, heart and breathing rate and evaporative water loss in hummingbirds. Physiol Zool 37: 212–223Google Scholar
  39. Lensky Y (1964) L'économie des liquides chez les abeilles aux temperatures élevées. Insects Soc 11: 207–222Google Scholar
  40. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vergl Physiol 36: 391–432Google Scholar
  41. Løken A (1973) Studies on Scandinavien bumblebees (Hymenoptera, Apidae). Norsk Ent Tidsskr 20: 1–218Google Scholar
  42. Lüttge U (1963) Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. II. Der Kationengehalt des Nektars und die Bedeutung des Verhältnisses Mg++/Ca++ im Drüsengewebe für die Sekretion. Planta 59: 108–114Google Scholar
  43. Newman HW (1851) Habits of the Bombinatrices. Proc Ent Soc London, pp 86–94Google Scholar
  44. Nicolson SW, Louw GN (1982) Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J Exp Zool 222: 287–296Google Scholar
  45. Ohguchi O, Aoki K (1983) Effects of colony need for water on optimal food choice in honeybees. Behav Ecol Sociobiol 12: 77–84CrossRefGoogle Scholar
  46. Pasedach-Poeverlein K (1941) Über das “Spritzen” der Bienen und über die Konzentrationsänderung ihres Honigblaseninhalts. Z Vergl Physiol 28: 197–210Google Scholar
  47. Pyke G (1979) Optimal foraging in bumblebees. Rule of movement between flowers within inflorescences. Anim Behav 27: 1167–1181Google Scholar
  48. Pyke G (1980) Optimal foraging in bumblebees. Calculations of net rate of energy intake and optimal patch choice. Theor Popul Biol 17: 232–246PubMedGoogle Scholar
  49. Rouschal W (1940) Osmotische Werte wirbelloser Landtiere und ihre ökologische Bedeutung. Z Wiss Zool 153: 196–217Google Scholar
  50. Schaffer WM, Jensen DB, Hobbs DE, Gurevitch J, Todd JR, Schaffer MV (1979) Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology 60:976–987Google Scholar
  51. Stobbard RM and Shaw J (1974) Salt and water balance: excretion. In: Rockstein M (ed). The physiology of Insecta Vol 5: 361–446. Academic Press New York and LondonGoogle Scholar
  52. Svensson BG (1979) Patrolling behaviour of bumblebee males (Hymenoptera, Apidae) in a subalpine/alpine area, Swedish Lappland. Zoon 7:67–94Google Scholar
  53. Svensson BG (1980) Species-isolating mechanisms in male bumble bees (Hymenoptera, Apidae). Abstr Uppsala Diss Facul Sci 549:1–42Google Scholar
  54. Thomas SP, Suthers RA (1972) The physiology and energetics of bat flight. J Exp Biol 57:317–335Google Scholar
  55. Tucker VA (1968) Respiratory physiology and evaporative water loss in the flying budgerigar. J Exp Biol 48:67–87Google Scholar
  56. Wall BJ, Oschman JL (1979) Insects. In: Maloiy GMO (ed), Comparative physiology of osmoregulation in animals Vol 2:219–260. Academic Press, London and New YorkGoogle Scholar
  57. Weis-Fogh T (1964) Diffusion in insect wing muscles, the most active tissue known. J Exp Biol 41:229–256PubMedGoogle Scholar
  58. Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for flight lift production. J Exp Biol 59:169–230Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Andreas Bertsch
    • 1
  1. 1.Fachbereich Biologie der Philipps UniversitätMarburgFederal Republic of Germany

Personalised recommendations