Skip to main content
Log in

Cyclic and noncyclic photophosphorylation during the ontogenesis of high-light and low-light leaves of Sinapis alba

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Noncyclic electron transport to ferricyanide and photophosphorylation as well as the methylviologen mediated aerobic and anaerobic photophosphorylation with dichlorophenolindophenol-ascorbate as the electron donor of photosystem I were measured during the development of high-light and low-light adapted leaves of Sinapis alba. Anaerobic methylviologen-catalyzed phosphorylation is more than twice as high as aerobic phosphorylation. The difference between the rates of aerobic and anaerobic phosphorylation is sensitive to dibromothymoquinone. Thus, under anaerobic conditions, methylviologen mediates a cyclic phosphorylation including plastoquinone. All photochemical activities of high-light chloroplasts are about twice as high as that of low-light chloroplasts and show a permanent decline with increasing plant age. The lower activities of low-light chloroplasts correlate with a decrease of electron transport components, such as cytochrome f. This indicates that the number of electron transport chains is decreased under low-light conditions and more chlorophyll molecules interact with one electrontransport chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Asc:

ascorbate

Chl:

chlorophyll a+b

DBMIB:

2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone

DCMU:

3-(dichlorophenyl)-1,1-dimethylurea

DCPIP:

dichlorophenolindophenol

HL:

high light

LL:

low light

MV:

methylviologen

PhAR:

photosynthetically active radiation

PS:

photosystem

References

  • Arnon, D.I., Chain, R.K. (1975) Regulation of ferredoxin-catalyzed photosynthetic phosphorylation. Proc. Natl. Acad. Sci. USA 72, 4961–4965

    PubMed  Google Scholar 

  • Avron, M. (1960) Photophosphorylation by swiss-chard chloroplasts. Biochim. Biophys. Acta 40, 257–272

    Article  PubMed  Google Scholar 

  • Björkman, O., Boardman, N.K., Anderson, J.M., Thorne, S.W., Goodchild, D.J., Pyliotis, N.A. (1972) Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnegie Inst. Year Book 71, 115–134

    Google Scholar 

  • Böhme, H. (1979) Photoreactions of cytochrome b563 and f554 in intact spinach chloroplasts: Regulation of cyclic electron flow. Eur. J. Biochem. 93, 287–293

    PubMed  Google Scholar 

  • Grahl, H., Wild, A. (1973) Lichtinduzierte Veränderungen im Photosynthese-Apparat von Sinapis alba. Ber. Dtsch. Bot. Ges. 86, 341–349

    Google Scholar 

  • Grahl, H., Wild, A. (1975) Studies on the content of P-700 and cytochromes in Sinapis alba during growth under two different light intensities. In: Environmental and biological control of photosynthesis, pp. 107–113, Marcelle, R., ed., W. Junk, The Hague

    Google Scholar 

  • Hagihara, B., Lardy, H. (1960) A method for the separation of orthophosphate from other phosphate compounds. J. Biol. Chem. 235, 889–894

    Google Scholar 

  • Harnischfeger, G. (1974) Studies on chloroplast degradation in vivo II. Effects of aging on Hill activity of plastids from Curcurbita cotyledons. Z. Pflanzenphysiol. 71, 301–312

    Google Scholar 

  • Heber, U., Egneus, H., Hauck, U., Jensen, M., Köster, S. (1978) Regulation of photosynthetic electron transport and photophosphorylation in intact chloroplasts and leaves of Spinacia oleracea L. Planta 143, 41–49

    Google Scholar 

  • Hoagland, D., Arnon, D.I. (1938) The water-culture methods of growing plants without soil. Calif. Exp. Sta. Circ. 347, Ch. 2

  • Lewandowska, M., Hart, J.W., Jarvis, P.G. (1976) Photosynthetic electron transport in plants of Sitka spruce subjected to differing light environments during growth. Physiol. Plant. 37, 269–274

    Google Scholar 

  • Lewandowska, M., Jarvis, P.G. (1978) Quantum requirements of photosynthetic electron transport in Sitka spruce from different light environments. Physiol. Plant. 42, 277–284

    Google Scholar 

  • Lichtenthaler, H.K. (1971) The unequal synthesis of the lipophilic plastidquinones in sun and shade leaves of Fagus silvatica L. Z. Naturforsch. 26b, 832–842

    Google Scholar 

  • Mousseau, M., Coste, F., de Kouchkovsky, Y. (1967) Influence des conditions d'elcairement pendant 1 a croissance sur l'activité photosynthétique de feuilles entières et de chloroplastes isolés. C. R. Acad. Sci. Paris D 264, 1158–1161

    Google Scholar 

  • Osipova, O.P., Khein, Kh., Ya., Nichiporovich, A.A. (1971) Activity of the photosynthetic apparatus of plants grown under different light intensities. Soviet Plant Physiol. 18, 211–213

    Google Scholar 

  • Rühle, W., Wild, A. (1979) Measurements of cytochrome f and P-700 in intact leaves of Sinapis alba grown under high-light and low-light conditions. Planta 146, 377–385

    Google Scholar 

  • Rühle, W., Wild, A. (1980) Oxidation of cytochrome f in intact leaves grown under high-light and low-light conditions. In: Proc. 5th Intern. Photosynth. Cong., in press, Akoyunoglou, G. ed., Intern. Science Services, Jerusalem

    Google Scholar 

  • Sestak, Z., Zima, J., Strnadova, H. (1977) Ontogenetic changes in the internal limitations to bean-leaf photosynthesis. Photosynthetica 11, 282–290

    Google Scholar 

  • Shmeleva, V.A., Ivanova, B.N., Akulova, E.A. (1976) Photophosphorylation and electron transport in chloroplasts grown at different light intensities. Soviet Plant Physiol. 23, 732–739

    Google Scholar 

  • Strotmann, H. (1970) Ioneneffekte beim Elektronentransport, H+-Transport und bei der Phosphorylierung isolierter Chloroplasten. Ber. Dtsch. Bot. Ges. 83, 443–446

    Google Scholar 

  • Strotmann, H., v. Gösseln, C. (1972) Photosystem l-abhängige Phosphorylierung isolierter Chloroplasten mit Ascorbat/2.6-Dichlorophenolindophenol als Elektronendonator und Methylviologen als Elektronenakzeptor. Z. Naturforsch. 27b, 445–455

    Google Scholar 

  • Trebst, A., Hauska, G. (1974) Energiekonservierung in der photosynthetischen Membran der Chloroplasten. Naturwissenschaften 61, 308–316

    Google Scholar 

  • Wild, A. (1979) Physiology of photosynthesis in higher plants. The adaptation to light intensity and light quality. Ber. Dtsch. Bot. Ges. 92, 341–364

    Google Scholar 

  • Wild, A., Ke, B., Shaw, E.R. (1973) The effect of light intensity during growth of Sinapis alba on the electron transport components. Z. Pflanzenphysiol. 69, 344–350

    Google Scholar 

  • Wild, A., Rühle, W., Grahl, H. (1975) The effect of light intensity during growth of Sinapis alba on the electron transport and noncyclic phosphorylation. In: Environmental and biological control of photosynthesis, pp. 115–121, Marcelle, R., ed., W. Junk, The Hague

    Google Scholar 

  • Wild, A., Grahl, H., Zickler, H.-O. (1972) Untersuchungen über den Ferredoxingehalt von experimentell induzierten Licht- und Schattentypen von Sinapis alba. Z. Pflanzenphysiol. 68 283–285

    Google Scholar 

  • Ziegler, R., Egle, K. (1965) Zur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Überprüfung der spektralphotometrischen Chlorophyll-Bestimmung. Beitr. Biol. Pflanz. 41, 11–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wild, A., Belz, J. & Rühle, W. Cyclic and noncyclic photophosphorylation during the ontogenesis of high-light and low-light leaves of Sinapis alba . Planta 153, 308–311 (1981). https://doi.org/10.1007/BF00384247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384247

Key words

Navigation