Skip to main content
Log in

Particle deposition due to thermal force in a tube

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Particle deposition in a tube with laminar flow is investigated. An analytical procedure is developed for predicting the particle deposition efficiency by incorporating the velocity of thermophoresis in the equation of conservation of particles. Effects of important parameters, such as temperature difference between the inlet gas and the tube wall, particle size and the Lewis number, on the particle precipitation efficiency are examined. Also considered in this work is the assumption of constant temperature gradient as a limiting case. It is found that particle precipitation efficiency predicted by using constant temperature gradient is much optimistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

particle concentration

C o :

inlet particle concentration

C〉:

bulk particle concentration

D :

molecular diffusivity

f :

dimensionless constant, 0.571, 0.79 and 1.22

Le :

Lewis number, α/D

M :

molecular weight

P :

pressure

r :

radial coordinate

r o :

radius of tube

R :

dimensionless radial coordinate, r/r o

R g :

gas constant

T :

temperature

T o :

inlet gas temperature

T w :

tube wall temperature

u p :

laminar velocity

u p〉:

bulk velocity

v p :

velocity of thermophoresis

W :

dimensionless parameter, R g μ o fT o/2DPM

x :

axial coordinate

X :

dimensionless axial coordinate, xD/〈ur 20

Y :

dimensionless particle concentration, C/C o

Y〉:

bulk dimensionless particle concentration

α :

thermal diffusivity

β :

ratio of wall to inlet gas temperatures, T w/T o

μ :

gas viscosity

μ o :

gas viscosity at temperature T o

τ :

shear stress

τ w :

shear stress at wal

ρ :

density

θ :

dimensionless temperature, (T−T w)/(T oT w)

References

  1. Hidy, G. H. and J. R. Brock, The Dynamics of Aerocolloidal Systems, Perga mon Press, New York, 1970.

    Google Scholar 

  2. Gordon, M. T. and C. Orr, Air Repair 4 (1954) 1.

    Google Scholar 

  3. Fraula, H. C., Brit. J. Ind. Med. 13 (1956) 196.

    Google Scholar 

  4. Cawood, W., Trans. Faraday Soc. 32 (1936) 1096.

    Google Scholar 

  5. Epstein, P. S., Z. Phys. 54, (1929) 537.

    ADS  Google Scholar 

  6. Brock, J. R., J. Colloid. Sci. 17 (1962) 768.

    Article  Google Scholar 

  7. Derjaguin, B. V. and S. P. Bakanov, Kolloid. Z. 21 (1959) 377.

    Google Scholar 

  8. Derjaguin, B. V. and Y. Yalamov, J. Colloid. Sci. 20 (1965) 555.

    Article  Google Scholar 

  9. Derjaguin, B. V., A. V. Storozhilova, and Y. Ravinovich, J. Colloid. Sci. 21 (1966) 35.

    Google Scholar 

  10. Keng, E. Y. H. and C. Orr, J. Colloid. Interface Sci. 22 (1966) 107.

    Article  Google Scholar 

  11. Byers, R. L. and S. Calvert, I&EC Fundl. 8 (1969) 647.

    Google Scholar 

  12. Singh, B. and R. L. Byers, I&EC Fundl. 11 (1971) 127.

    Google Scholar 

  13. Fulford, C. D., M. Moo-Young, and M. Babu, Can J. Chem. Eng. 49 (1971) 533.

    Google Scholar 

  14. Moo-Young, M. and K. Yamaguchi, Chem. Eng. Sci. 30 (1975) 1291.

    Google Scholar 

  15. Derjaguin, B. V. and Y. Yalamov, Topics in Current Aerosol Research (edited by G. M. Hidy and J. R. Brock), Pergamon Press, N. Y., 1972.

    Google Scholar 

  16. Perry, J. H., Chemical Engineering Handbook, 3rd. edn., McGraw-Hill, N. Y., 1970.

    Google Scholar 

  17. Lapidus, L., Digital Computation for Chemical Engineers, McGraw-Hill, N. Y., 1962.

    Google Scholar 

  18. McCabe, W. L. and J. C. Smith, Unit Operations of Chemical Engineering, McGraw-Hill, N. Y., 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S.H. Particle deposition due to thermal force in a tube. Appl. Sci. Res. 32, 637–648 (1976). https://doi.org/10.1007/BF00384125

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384125

Keywords

Navigation