Skip to main content
Log in

A correlative ultrastructural and enzymatic study of cotyledonary microbodies following germination of fat-storing seeds

  • Published:
Planta Aims and scope Submit manuscript

Summary

Sunflower, cucumber, and tomato cotyledons, which contain microbodies in both the early lipid-degrading and the later photosynthetic stages of post-germinative growth, were processed for electron microscopy according to conventional procedures and examined 1, 4 and 7 days after germination. Homogenates of sunflower cotyledons were assayed for enzymes characteristic of glyoxysomes and leaf peroxisomes (both of which are defined morphologically as microbodies) at stages corresponding to the fixations for electron microscopy. The particulate nature of these enzymes was demonstrated by differential and equilibrium density centrifugation, making it possible to relate them to the microbodies seen in situ.

One day after germination, the microbodies are present as small organelles among large numbers of protein and lipid storage bodies; the cell homogenate contains catalase but no detectable isocitrate lyase (characteristic of glyoxysomes) or glycolic acid oxidase (characteristic of leaf peroxisomes). 4 days after germination, numerous microbodies (glyoxysomes) are in extensive and frequent contact with lipid bodies. The microbodies often have cytoplasmic invaginations. At this stage the cells are rapidly converting lipids to carbohydrates, and the homogenate has high isocitrate lyase activity. 7 days after germination, microbodies (peroxisomes) are appressed to chloroplasts and frequently squeezed between them in the green photosynthetic cells. The homogenate at this stage has substantial glycolic acid oxidase activity but a reduced level of isocitrate lyase. It is yet to be determined whether the peroxisomes present at day 7 are derived from preexisting glyoxysomes or arise as a separate population of organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagshaw, V., Brown, R., Yeoman, M. M.: Changes in the mitochondrial complex accompanying callus growth. Ann. Bot. 33, 35–44 (1969).

    Google Scholar 

  • Breidenbach, R. W., Beevers, H.: Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem. biophys. Res. Commun. 27, 462–469 (1967).

    Google Scholar 

  • —, Kahn, A., Beevers, H.: Characterization of glyoxysomes from castor bean endosperm. Plant Physiol. 43, 705–713 (1968).

    Google Scholar 

  • Cooper, T. G., Beevers, H.: Mitochondria and glyoxysomes from castor bean endosperm. J. biol. Chem. 244, 3507–3513 (1969a).

    Google Scholar 

  • ——: β Oxidation in glyoxysomes from castor bean endosperm. J. biol. Chem. 244, 3514–3520 (1969b).

    Google Scholar 

  • ——: Fatty acid activation in glyoxysomes. (Abstr.) Fed. Proc. 29, 868 (1970).

    Google Scholar 

  • De Duve, C., Baudhuin, P.: Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323–357 (1966).

    Google Scholar 

  • Franke, W. W., Krien, S., Brown, R. M.: Simultaneous glutaraldehyde-osmium tetroxide fixation with postosmication. Histochemie 19, 162–164 (1969).

    Google Scholar 

  • Frederick, S. E., Newcomb, E. H.: Microbody-like organelles in leaf cells. Science 163, 1353–1355 (1969a).

    Google Scholar 

  • ——: Cytochemical localization of catalase in leaf microbodies (peroxisomes). J. Cell Biol. 43, 343–353 (1969b).

    Google Scholar 

  • ——, Vigil, E. L., Wergin, W. P.: Fine-structural characterization of plant microbodies. Planta (Berl.) 81, 229–252 (1968).

    Google Scholar 

  • Gerhardt, B. P., Beevers, H.: Developmental studies on glyoxysomes in Ricinus endosperm. J. Cell Biol. 44, 94–102 (1970).

    Article  Google Scholar 

  • Jacks, T. J., Yatsu, L. Y., Altschul, A. M.: Isolation and characterization of peanut spherosomes. Plant Physiol. 42, 585–597 (1967).

    Google Scholar 

  • Kisaki, T., Tolbert, N. E.: Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts. Plant Physiol. 44, 242–250 (1969).

    Google Scholar 

  • Kobr, M. J., Beevers, H.: Distribution of gluconeogenic enzymes in the castor bean endosperm. Plant Physiol. 43, S-17 (1968).

    Google Scholar 

  • —, Vanderhaeghe, F., Combépine, G.: Particulate enzymes of the glyoxylate cycle in Neurospora crassa. Biochem. biophys. Res. Commun. 37, 640–645 (1969).

    PubMed  Google Scholar 

  • Legg, P. G., Wood, R. L.: New observation on microbodies. A cytochemical study on CPIB-treated rat liver. J. Cell Biol. 45, 118–130 (1970).

    Article  PubMed  Google Scholar 

  • Longo, C. P., Longo, G. P.: The development of glyoxysomes in peanut cotyledons and maize scutella. Plant Physiol. 45, 249–254 (1970).

    PubMed  Google Scholar 

  • —, Varner, J. E.: The development of glyoxysomes in isolated peanut cotyledons. In: Plant research '68, p. 109–111. East Lansing: MSU/AEC Plant Research Laboratory, Michigan State University, 1968.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randal, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    PubMed  Google Scholar 

  • Lück, H.: Catalase. In: Methods of enzymatic analysis (H. U. Bergmeyer, ed.), p. 885–894. New York: Acad. Press 1963.

    Google Scholar 

  • McGregor, D. I., Beevers, H.: Development of enzymes in watermelon seedlings. Plant Physiol. 44, S-33 (1969).

    Google Scholar 

  • Mollenhauer, H. H., Morré, D. J., Kelley, A. G.: The widespread occurrence of plant cytosomes resembling animal microbodies. Protoplasma (Wien) 62, 44–52 (1966).

    Google Scholar 

  • Müller, M., Hogg, J. F., de Duve, C.: Distribution of tricarboxylic acid cycle enzymes and glyoxylate cycle enzymes between mitochondria and peroxisomes in Tetrahymena pyriformis. J. biol. Chem. 243, 5385–5395 (1968).

    PubMed  Google Scholar 

  • Newcomb, E. H.: Fine structure of protein-storing plastids in bean root tips. J. Cell Biol. 33, 143–163 (1967).

    Article  Google Scholar 

  • Ory, R. L., Yatsu, L. Y., Kircher, H. W.: Association of lipase activity with the spherosomes of Ricinus communis. Arch. Biochem. 264, 255–264 (1968).

    Google Scholar 

  • Spichiger, J. U.: Isolation and Charakterisierung von Sphärosomen und Glyoxysomen aus Tabakendosperm. Planta (Berl.) 89, 56–75 (1969).

    Google Scholar 

  • Tolbert, N. E.: Isolation of leaf peroxisomes. In: Methods in enzymology, photosynthesis and nitrogen fixation (A. San Pietro, ed.), in press. New York: Acad. Press 1970.

    Google Scholar 

  • Tolbert, N. E., Oeser, A., Kisaki, T., Hageman, R. H., Yamazaki, R. K.: Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J. biol. Chem. 243, 5179–5184 (1968).

    Google Scholar 

  • ——, Yamazaki, R. K., Hageman, R. H., Kisaki, T.: A survey of plants for leaf peroxisomes. Plant Physiol. 44, 135–147 (1969).

    PubMed  Google Scholar 

  • —, Yamazaki, R. K.: Leaf peroxisomes and their relation to photorespiration and photosynthesis. Ann. N. Y. Acad. Sci. 168, 325–341 (1969).

    PubMed  Google Scholar 

  • Vigil, E. L.: Intracellular localization of catalase (peroxidatic) activity in plant microbodies. J. Histochem. Cytochem. 17, 425–428 (1969).

    PubMed  Google Scholar 

  • Vigil, E. L.: Cytochemical and developmental changes in microbodies (glyoxysomes) and related organelles of castor bean endosperm. J. Cell Biol., in press (1970).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, P.J., Trelease, R.N., Becker, W.M. et al. A correlative ultrastructural and enzymatic study of cotyledonary microbodies following germination of fat-storing seeds. Planta 93, 269–288 (1970). https://doi.org/10.1007/BF00384101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384101

Keywords

Navigation