Skip to main content
Log in

Asymmetric solidification of flowing liquid in a convectively cooled parallel-plate channel

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

An analysis is made of steady-state unsymmetric liquid solidification of forced laminar flow in a parallel-plate channel with different uniform external convection coolings at the upper and lower plates, respectively. The classical Graetz type analysis is made by using the confluent hypergoemetric function. The case of one plate with perfect insulation and the other plate with a uniform external convection cooling is studied in detail. Numerical results are obtained for liquid solidification-free length, ice layer thickness, pressure drop, bulk temperature, heat transfer rate and local Nusselt number for Bi 1=0, Bi 2=1, 2, 10, 100, ε=1 ∼ 10, Pr=13.2 and k 1/k s=0.25 using 10 eigenvalues. The configuration and thermal conditions may be encountered, for example, in heat exchangers using cryogenics and freezing of ice sheets on northern rivers and lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b :

parameters in Kummer's equation

Bi 1, Bi 2 :

Biot numbers at lower and upper plates, h 1 L/k, h 2 L/k

Bi s :

(k 1/k s)Bi2

C 1j , C 2j :

constants in eq. (8)

C j, Dj :

constants

c p :

specific heat at constant pressure

E j, Kj :

eigenconstants, eqs. (4) and (33)

H :

function of x only, equation (31)

h :

local heat transfer coefficient, eqs. (54) and (55)

h 1, h 2 :

overall heat transfer coefficients defined by kT(X, 0)/∂Y= h 1[T(X, 0) − T ], −kT(X,L)/∂Y=h 2[T(X,L)T ]

k :

thermal conductivity of liquid

L :

distance between parallel plates

M(a, b, z):

confluent hypergeometric function

N j, Yj :

eigenfunctions

Nu :

Nusselt number, hL/k

P, P 0 :

Pressures at X and X=0

Pe :

Peclet number, 4 U m L/α

Pr :

Prandtl number, ν/α

p :

dimensionless pressure drop, (P 0P)/(ρU 2m /2)

Q, Q :

total heat transfer rate and dimensionless Q, eq. (51)

q :

local heat transfer rate, eqs. (54) and (55)

T, T b, T f :

liquid temperature, bulk temperature and freezing temperature

T 0, T :

uniform entrance temperature and ambient temperature

U, V :

axial and transverse velocities

U m :

average axial velocity

v :

solution of Kummer's equation

X, Y :

rectangular coordinates

X′ :

axial coordinate with origin at solid-phase entrance

x, y :

(X/LPe), (Y/L)

x y :

(X′/LPe), (Y/L) in freezing zone

x f :

dimensionless solidifcation-free length

z :

transformed variable

α :

thermal diffusivity

α j, βj :

eigenvalues

δ, \(\bar \delta \) :

transverse coordinate of liquid-solid interface and δ/L

ε :

superheat ratio, (T 0T f)/(T f T )

η :

dimensionless transverse coordinate, \(\bar y/\bar \delta = Y/\delta \)

θ :

dimensionless temperature difference, (TT )/(T 0T )

θ b :

dimensionless bulk temperatures, eqs. (48) and (50)

θ f :

(T fT )/(T 0T )

μ, ν :

dynamic viscosity and kinematic viscosity

ρ :

density

φ :

dimensionless temperature difference, (TT f)/(T 0T f)

1, s:

liquid and solid-phase

References

  1. Zerkle, R. D. and J. E. Sunderland, J. Heat Transfer 90C (1968) 183.

    Google Scholar 

  2. DesRuisseaux, N. and R. D. Zerkle, Can. J. Chem. Eng. 47 (1969) 233.

    Google Scholar 

  3. Özisik, M. N. and J. C. Mulligan, J. Heat Transfer 91C (1969) 385.

    Google Scholar 

  4. Bilenas, J. A. and L. M. Jiji, Fourth International Conference on Heat Transfer, Paris-Versailles, Vol. 1, Cu 2.1 (1970).

  5. Bilenas, J. A. and L. M. Jiji, J. Franklin Inst. 289 (1970) 265.

    Google Scholar 

  6. Hwang, G. J. and J. P. Sheu, Can. J. Chem. Eng. 54 (1976) 66.

    Google Scholar 

  7. Zerkle, R. D., Proc. 6th Southeastern Seminar on Thermal Sciences, 1 (1970).

  8. Lock, G. S. H., R. D. J. Freeborn, and R. H. Nyren, Fourth International Conference Heat Transfer, Paris-Versailles, Vol. 1 (1970) Cu. 2.9.

  9. Lee, D. G. and R. D. Zerkle, J. Heat Transfer 91C (1969) 583.

    Google Scholar 

  10. Lapadula, C. and W. K. Mueller, Int. J. Heat Mass Transfer 9 (1966) 702.

    Google Scholar 

  11. Beaubouef, R. T. and A. J. Chapman, Int. J. Heat Mass Transfer 10 (1967) 1581.

    Google Scholar 

  12. Miller, M. L. and L. M. Jiji, Appl. Sci. Res. 22 (1970) 141.

    Google Scholar 

  13. Savino, J. M. and R. Siegel, NASA TN D-4015, Washington (D.C.) (1967).

  14. Siegel, R. and J. M. Savine, NASA TN D-4353, Washington (D.C.) (1968).

  15. Schenk, J., Appl. Sci. Res. 5A (1955) 241.

    Google Scholar 

  16. Dennis, S. C. R. and G. Poots, Appl. Sci. Res. 5A (1955) 453.

    Google Scholar 

  17. Cess, R. D. and E. C. Shaffer, Appl. Sci. Res. 9A (1959) 64.

    Google Scholar 

  18. Cess, R. D. and E. C. Shaffer, J. Aero/Space Sciences 26 (1959) 538.

    Google Scholar 

  19. Pirkle, J. C. and V. G. Sigillito, J. Comp. Phys. 9 (1972) 207.

    Google Scholar 

  20. Davis, E. J., Can. J. Chem. Eng. 51 (1973) 562.

    Google Scholar 

  21. Van Der Does De Bye, J. A. W. and J. Schenk, Appl. Sci. Res. 3A (1953) 308.

    Google Scholar 

  22. Hwang, G. J. and K. C. Cheng, J. Heat Transfer 95C (1973) 72.

    Google Scholar 

  23. Kamotani, Y. and S. Ostrach, J. Heat Transfer 98C (1976) 62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, K.C., Wong, SL. Asymmetric solidification of flowing liquid in a convectively cooled parallel-plate channel. Appl. Sci. Res. 33, 309–335 (1977). https://doi.org/10.1007/BF00383958

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00383958

Keywords

Navigation