Skip to main content
Log in

Living organisms and the quantum-mechanical wave properties of matter

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Heat capacity data for the solid chemical elements and for 10 amino acids from proteins, and Kopp's Law heat capacity values for the chemical elements, show that proteins have extremely low heat capacities compared to other substances. The type of quantum-mechanical interaction that is highly predominant in low-heat-capacity substances reveals the quantum wave properties of matter. Therefore, the quantum-mechanical wave properties of matter are highly predominant in proteins. Some speculations about the meaning of this result are examined and assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walsh, E.: Introduction to Biochemistry, Macmillan, New York, 1961, pp. 1–25.

    Google Scholar 

  2. Kelley, K. K. and King, E. G.: Contributions to the data on theoretical metallurgy XIV. Entropies of the elements and inorganic compounds, U.S. Bureau of Mines Bull. 592, (1961), 101–117.

    Google Scholar 

  3. Cochran, A. A.: Life and the wave properties of matter, Dialectica, Internat. Rev. Philos. Knowledge 19 (3/4), (1965), 290–312.

    Google Scholar 

  4. Hix, C. and Alley, R.: Physical Laws and Effects, Wiley, New York, 1958, pp. 42–3.

    Google Scholar 

  5. MacDougall, F.: Physical Chemistry, Macmillan, New York, 1936, pp. 120–121.

    Google Scholar 

  6. Huffman, H. and Ellis, E.: J. Amer. Chem. Soc. 59 (1937), 2150.

    Google Scholar 

  7. Rossini, F., Wagman, D., Evans, W., Levine, S., and Jaffe, I.: Selected values of chemical thermodynamic properties, NBS Circ. 500, U.S. Dept. of Commerce, 1952.

  8. Huffman, H. and Fox, S., J. Amer. Chem. Soc. 62 (1940), 3464.

    Google Scholar 

  9. Huffman, H. and Borsook, H.: J. Amer. Chem. Soc. 54 (1932), 4297.

    Google Scholar 

  10. Huffman, H. and Ellis, E.: J. Amer. Chem. Soc. 57 (1935), 46.

    Google Scholar 

  11. Bohm, D.: Quantum Theory, Prentice-Hall, New York, 1951, pp. 94–95, 104–111, 118–120.

    Google Scholar 

  12. Cochran, A. A.: The quantum physical basis of life, Main Currents in Modern Thought 13 (5) (1957), 99–104.

    Google Scholar 

  13. Mendelssohn, K.: Superfluids, Science 127 (3292) (1958), 215–221.

    Google Scholar 

  14. Cochran, A. A.: The Application of Quantum-Mechanical Concepts To Biological Systems, Thesis T 1484, Univ. of Missouri-Rolla, 1963.

  15. Cochran, A. A.: Mind, matter, and quanta, Main Currents in Modern Thought 22 (4) (1966), 79–88.

    Google Scholar 

  16. Cochran, A. A.: Relationships between quantum physics and biology, Found. Phys. 1 (3) (1971), 235–250.

    Google Scholar 

  17. Witmer, E. E.: Interpretation of quantum mechanics and the future of physics, Amer. J. Phys. 35 (1967), 40–52.

    Google Scholar 

  18. Miller, D. A.: Biological systems and the rumored animate-sentient like aspect of physical phenomena, J. Biol. Phys. 17 (1990), 145–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochran, A.A. Living organisms and the quantum-mechanical wave properties of matter. Journal of Biological Physics 18, 11–17 (1991). https://doi.org/10.1007/BF00383786

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00383786

Key words

Navigation