Skip to main content
Log in

The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2″)

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In 7% of gram-negative bacteria resistance to gentamicin is mainly mediated by plasmid-encoded aminoglycoside transferase ANT-(2″). The genome organization of 15 aadB plasmids (42-110 kb) was analyzed by restriction and hybridization techniques. They appeared to be IncFII-like replicons but were distinct from R6 by virtue of small substitutions in the transfer region. Aminoglycoside resistance genes aadB and aadA were located on Tn21 related elements. Only one of them was able to transpose its resistance genes mer sul aadA and aadB (Tn4000), the other elements were naturally occurring defective transposons. In some of these structures deletions were identified at the termini, at sul, aadA, mer or transposition function-insertions adjacent to aadA or mer. The mode of these rearrangements and their site-specificity were considered with respect to the evolution of the Tn21 transposon family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aadA (genotype):

AAD-(3″) (phenotype): aminoglycoside 3″-adenylytransferase

aadB :

ANT-(2″): aminoglycoside 2″-adenylyltransferase

aphA :

APH-(3′)I: aminoglycoside 3′-phosphotransferase

aacA :

AAC-(6′): aminoglycoside 6-N′-acetyl-transferase

aacC :

AAC-(3): aminoglycoside 3-N′-acetyltransferase

cat :

CAT: chloramphenicol-acetyltransferase

Ap:

ampicillin

Su:

sulfonamides

Tc:

tetracycline

Sm:

streptomycin

Spe:

spectinomycin

Hg:

mercury

Cb:

carbenicillin

Dk:

dibekacin

Gm:

gentamicin

Km:

kanamycin

Nm:

neomycin

Net:

netilmycin

Pm:

paromomycin

But:

butirosin

Tm:

tobramycin

Sis:

sisomycin

Cm:

chloramphenicol

kb:

kilobase

References

  • Arthur A, Sherratt D (1979) Dissection of the transposition process: a transposon-encoded site-specific recombination system. Mol Gen Genet 175:267–274

    PubMed  Google Scholar 

  • Albertini AM, Hofer M, Calos MP, Miller JH (1982) On the formation of spontaneous deletions: The importance of short sequence homologies in the generations of large deletions. Cell 29:319–328

    Article  Google Scholar 

  • Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli. Bacteriol Rev 36:525–527

    PubMed  Google Scholar 

  • Beneviste R, Davies JA (1971) Enzymatic acetylation of aminoglycoside antibiotics by Escherichia coli carrying an R-factor. Biochemistry 10:1787–1796

    PubMed  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heynecker HL, Boyer HW (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113

    Article  Google Scholar 

  • Botchan M, Topp W, Sambrook J (1976) The arrangement of Simian Virus 40 sequences in the DNA of transformed cells. Cell 9:269–274

    PubMed  Google Scholar 

  • Broker TR, Soll L, Chow LT (1977) Underwound loops in selfrenatured DNA can be diagnostic of inverted duplications and translocated sequences. J Mol Biol 113:579–589

    PubMed  Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    PubMed  Google Scholar 

  • Cornelis G, Sommer H, Saedler H (1981) Transposon Tn951 (Tnlac) is defective and related to Tn3. Mol Gen Genet 184:241–248

    PubMed  Google Scholar 

  • Davies J, Kagan SA (1981) Aminoglycoside antibiotics: General aspects and resistance. In: Timmis KN, Pühler A (eds) Plasmid of medical, environmental and commercial importance. Elsevier-North Holland Biomedical Press, Amsterdam, pp 83–94

    Google Scholar 

  • Davis RW, Simon M, Davidson N (1971) Electron microscope heteroduplex methods for mapping regions of base sequence homology in nucleic acids. In: Grosman L, Moldave K (eds) Methods in enzymology, vol 21. Academic Press, New York, pp 413–428

    Google Scholar 

  • de la Cruz F, Grinsted J (1982) Genetic and molecular characterization of Tn21, a multiple resistance transposon from R100.1. J Bacteriol 151:222–228

    PubMed  Google Scholar 

  • Diver WP, Grinsted J, Fritzinger DC, Brown NL, Altenbuchner J, Rogowsky P, Schmitt R (1983) DNA sequence of and complementation by tmpR genes of Tn21, Tn501 and Tn1721. Mol Gen Genet 191:189–193

    PubMed  Google Scholar 

  • Dodd HM, Bennett PM (1983) R46 encodes a site-specific recombination system interchangable with the resolution function of TnA. Plasmid 9:247–261

    PubMed  Google Scholar 

  • Doherty MJ, Morrison PT, Kolodner R (1983) Genetic recombination of bacterial plasmid DNA: physical and genetic analysis of the products of plasmid recombination in Escherichia coli. J Mol Biol 167:539–560

    PubMed  Google Scholar 

  • Egner C, Berg DE (1981) Excision of transposon Tn5 is dependent on the inverted repeats but not on the transposase function of Tn5. Proc Natl Acad Sci USA 78:459–463

    PubMed  Google Scholar 

  • Fiandt M, Hradecna Z, Lozeron HA, Szybalski W (1971) Electron micrograph mapping of deletions, insertions, and homologies in the DNAs of coliphages lambda and phi 80. In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 329–354

    Google Scholar 

  • Foster TJ, Nakahara H, Weiss AA, Silver S (1979) Transposon A-generated mutations in the mercuric resistance genes of plasmid R100.1. J Bacteriol 140:167–181

    PubMed  Google Scholar 

  • Grinsted J, de la Cruz F, Altenbuchner J, Schmitt R (1982) Complementation of transposition of tnpA mutants of Tn3, Tn21, Tn501, and Tn1721. Plasmid 8:276–286

    PubMed  Google Scholar 

  • Grunstein M, Hogness D (1975) Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3963

    PubMed  Google Scholar 

  • Haas MJ, Davies J (1980) Characterization of the plasmids comprising the “R. factor” R5 and their relationship to other R plasmids. Plasmid 3:260–277

    PubMed  Google Scholar 

  • Heffron F, McCarthy GJ, Ohtsubo H, Ohtsubo E (1979) DNA sequence analysis of the transposon Tn3: three genes and three sites involved in the transposition of Tn3. Cell 18:1153–1163

    PubMed  Google Scholar 

  • Jones IM, Primrose SB, Ehrlich SD (1982) Recombination between short direct repeats in a recA host. Mol Gen Genet 188:486–489

    PubMed  Google Scholar 

  • Kim JS, Davidson N (1974) Electron microscope heteroduplex study of sequence relations of T2, T4, and T6 phage DNAs. Virology 57:93–111

    Article  PubMed  Google Scholar 

  • Kleckner N, Barker DF, Ross DG, Botstein D (1978) Properties of the translocatable tetracycline-resistant element Tn10 in Escherichia coli and bacteriophage λ. Genetics 90:427–461

    PubMed  Google Scholar 

  • Kleckner N (1981) Transposable elements in procaryotes. Annu Rev Genet 15:341–404

    Article  Google Scholar 

  • Klopfer-Kaul I (1981) Epidemiologie und molekulargenetische Grundlage des Aminoglykosidantibiotika-inaktivierenden Enzyms Adenylytransferase ANT-(2″). Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität zu Bonn

  • Kopecko DJ, Brevet J, Cohen SN (1976) Involvement of multiple translocating DNA sequences and recombinational hotspots in the structural evolution of bacterial plasmids. J Mol Biol 108:333–360

    PubMed  Google Scholar 

  • Kratz J, Schmidt F, Wiedemann B (1983) Characterization of Tn2411 and Tn2410, two transposons derived from R-plasmid R1767 and related to Tn2603 and Tn21. J Bacteriol 155:1333–1342

    PubMed  Google Scholar 

  • Kushner SR (1978) An improved method for transformation of Escherichia coli with ColE1 derived plasmids. In: Boyer HW, Nicosia S (eds) Proceedings of the International Symposium of genetic engenering. Elsevier/North Holland, Biomedical Press, Amsterdam, pp 17–23

    Google Scholar 

  • Matthew M, Hedges RW, Smith JT (1975) Types of β-lactamase determined by plasmids of gramnegative bacteria. J Bacteriol 138:657–662

    Google Scholar 

  • Meyer JF, Nies BA, Wiedemann B (1983) Amikacin resistance mediated by multiresistance transposon (Tn2424). J Bacteriol 155:755–760

    PubMed  Google Scholar 

  • Nisen PD, Kopecko DJ, Chow L, Cohen S (1977) Site specific DNA deletions occurring adjacent to the termini of a transposable ampicillin element (Tn3). J Mol Biol 117:975–998

    PubMed  Google Scholar 

  • Novick RP, Clowes RC, Cohen SN, Curties III R, Datta N, Falkow S (1976) Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev 40:168–189

    PubMed  Google Scholar 

  • Nugent ME, Bone DH, Datta N (1979) A transposon, Tn732, encoding gentamicin/tobramicin resistance. Nature 282:422–423

    PubMed  Google Scholar 

  • Oka A, Sugisaki H, Takanami M (1981) Nucleotide sequence of the kanamycin transposon Tn903. J Mol Biol 147:217–226

    PubMed  Google Scholar 

  • Paul-Ehrilich-Gesellschaft für Chemotherapie e.V., Arbeitsgemeinschaft Resistenz (1980) Empfindlichkeit klinischer Isolate einiger Enterobacteriaceae sowie Pseudomonas aeruginosa, Staphylococcus aureus und Streptococcus faecalis gegenüber Chemotherapeutika. Ergebnisse einer überregionalen kooperativen Studie aus dem Jahre 1979. Infection 8:307–308

  • Rubens CE, McNeill WF, Farrer WE (1979) A transposable plasmid DNA sequence in Pseudomonas aeruginosa which mediates resistance to genetamicin and four other antimicrobial agents. J Bacteriol 129:1632–1635

    Google Scholar 

  • Rüther U (1980) Construction and properties of a new cloning vehicle, allowing direct screening of recombinant plasmids. Mol Gen Genet 178:475–477

    PubMed  Google Scholar 

  • Ryder TB, Davison DB, Rosen JI, Ohtsubo E, Ohtsubo H (1982) Analysis of plasmid genome evolution based on nucleotidesequence comparison of two related plasmids of Escherichia coli. Gene 17:299–310

    Article  PubMed  Google Scholar 

  • Sanger F, Air GM, Barell BC, Brown NL, Coulson AR, Fiddes JC, Hutchinson III CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage ϕX174 DNA. Nature (London) 265:678–695

    Google Scholar 

  • Schmidt F, van Treeck U, Wiedemann B (1982) Multimerization and replication of plasmid pBP11. Plasmid 8:126–140

    PubMed  Google Scholar 

  • Schmidt F, Kratz J, Wiedemann B (1983) Identification of Tn2401, a transposon encoding multiresistance to aminoglycosides. J Gen Microbiol 129:1527–1536

    PubMed  Google Scholar 

  • Schmidt F, Klopfer-Kaul I (1984) Evolutionary relationship between Tn21 like elements and pBP201, a plasmid from Klebsiella pneumoniae mediating resistance to gentamicin and eight other drugs. Plasmid, submitted for publication

  • Sharp PA, Cohen SN, Davidson N (1973) Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. II. Structure of drug resistance (R) factors and F factors. J Mol Biol 71:471–497

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoreses. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Stahl F (1979) Genetic recombination. Thinking about it in phage and fungi. Freeman, San Francisco, CA, 133–159

    Google Scholar 

  • Starlinger P (1980) IS elements and transposons. Plasmid 3:241–259

    PubMed  Google Scholar 

  • Tanaka M, Yamamoto T, Saway T (1983) Evolution of complex resistance transposons from an ancestral mercury transposon. J Bacteriol 153:1432–1438

    PubMed  Google Scholar 

  • Timmis KN, Danbara H, Brady G, Lurz R (1981) Inheritance functions of group IncFII transmissible antibiotic resistance plasmids. Plasmid 5:53–75

    PubMed  Google Scholar 

  • van Treeck U, Schmidt F, Wiedemann B (1981) Molecular nature of a streptomycin and sulfonamide resistance plasmid (pBP1) prevalent in clinical Escherichia coli strains and integration of an ampicillin resistance transposon (TnA). Antimicrob Agenets Chemother 19:371–380

    Google Scholar 

  • Vilarroel R, Hedgesm RW, Maenhaut R, Leemans J, Engler G, van Montague M, Schell J (1983) Heteroduplex analysis of P-plasmid evolution: The role of insertion and deletion of transposable elements. Mol Gen Genet 189:390–399

    PubMed  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  PubMed  Google Scholar 

  • Wahl GM, Stern M, Stark GR (1979) Efficient tranfer of large DNA fragments from agarose gels to diazobenzyloxymethylpaper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci USA 76:3683–3687

    PubMed  Google Scholar 

  • Weinstock GM, Botstein D (1979) Regional specificity of illegitime recombination associated with the translocatable ampicillin-resistance element Tn1. Cold Spring Harbor Symp Quant Biol 43:1209–1215

    PubMed  Google Scholar 

  • Willets NS, McIntire S (1978) Isolation and characterization of λ tra transducing phages from ADFL233 (FlactraB::EDλ4). J Mol Biol 126:525–549

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Isono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, F. The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2″). Molec. Gen. Genet. 194, 248–259 (1984). https://doi.org/10.1007/BF00383524

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00383524

Keywords

Navigation