Skip to main content
Log in

Control of Herpes simplex virus thymidine kinase gene expression in Saccharomyces cerevisiae by a yeast promoter sequence

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

This study presents the first evidence that the 5′ promoter region of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene (G-3-PD) promoter will permit expression of an adjacent foreign gene. The S. cerevisiae G-3-PD promoter was linked to the herpes simplex virus — thymidine kinase (HSV-TK) gene in a shuttle plasmid capable of autonomous replication in both yeast and Escherichia coli. Since the HSV-TK gene promoter is not functional in yeast, yeast cells containing these plasmids will express the HSV-TK gene and synthesize thymidine kinase only if the yeast promoter fragment is fused to the HSV-TK gene in the proper orientation. The 5′ flanking sequences necessary for the expression of heterologous eukaryotic genes in S. cerevisiae are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alber T, Kawasaki G (1982) Nucleotide sequence of the triose phosphate isomerase gene of Saccharomyces cerevisiae. J Mol Appl Genet 1:419–434

    PubMed  Google Scholar 

  • Backman K (1980) A cautionary none on the use of certain restriction endonuclease with methylated substrates. Gene 11:169–171

    Article  PubMed  Google Scholar 

  • Beggs JD, Van den Berg J, Van Ooyen A, Weissmann C (1980) Abnormal expression of chromosomal rabbit β-globin gene in Saccharomyces cerevisiae. Nature 283:835–840

    PubMed  Google Scholar 

  • Bennetzen JL, Hall BD (1982) The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J Biol Chem 257:3018–3025

    PubMed  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7:1513–1523

    PubMed  Google Scholar 

  • Bisson LF, Thorner J (1977) Thymidine-5′-monophosphate requiring mutants of Saccharomyces cerevisiae are deficient in thymidylate synthetase. J Bacteriol 132:44–50

    PubMed  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Corsa JH, Falkow S (1977) Construction and characterization of new cloning vehicles — II. A multipurpose cloning system. Gene 2:95–113

    Article  Google Scholar 

  • Bolivar F, Backman K (1979) Plasmids of Escherichia coli as cloning vectors. Methods in Enzymology 68:245–267

    PubMed  Google Scholar 

  • Boyer HW, Rouland-Dussolx D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    PubMed  Google Scholar 

  • Brendel M, Fath WW (1974) Isolation and characterization of mutants of Saccharomyces cerevisiae auxotrophic and conditionally auxotrophic for 5′-dTMP. Z Naturforsch 29C:733–738

    Google Scholar 

  • Brendel M, Fath WW, Laskowski W (1975) Isolation and characterization of mutants of Saccharomyces cerevisiae able to grow after inhibition of dTMP synthesis. Methods in Cell Biology 11:287–294

    PubMed  Google Scholar 

  • Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences of reassociation. Methods in Enzymology 29:363–418

    PubMed  Google Scholar 

  • Cameron JR, Philippsen P, Davis RW (1977) Analysis of chromosomal integration and deletions of yeast plasmids. Nucl Acids Res 4:1429–1448

    PubMed  Google Scholar 

  • Clewell DB, Helinski DR (1972) Effect of growth conditions on the formation of the relaxation complex of supercoiled Col El deoxyribonucleic acid and protein in Escherichia coli. J Bacteriol 110:1135–1146

    PubMed  Google Scholar 

  • Cohen JD, Eccleshall TR, Needleman RB, Federoff H, Buchferer BA, Marmur J (1980) Functional expression in yeast of the Escherichia coli plasmid gene coding for chloramphenicol acetyltransferase. Proc Natl Acad Sci USA 77:1078–1082

    PubMed  Google Scholar 

  • Colbere-Garapin F, Chousterman S, Horodniceanu F, Kourilsky P, Garapin AC (1979) Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12. Proc Natl Acad Sci USA 76:3755–3759

    PubMed  Google Scholar 

  • Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA (1980) Rapid DNA isolations for enzymatic and hybridization analysis. Methods in Enzymology 65:404–411

    PubMed  Google Scholar 

  • Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM (1982) Conservation of high efficiency promoter sequences in Saccharomyces cerevisiae. Nucl Acids Res 10:2625–2637

    PubMed  Google Scholar 

  • El Kouni MH, Sungman C (1981) A simple radioisotopic assay for nucleoside kinases employing alumina for separation of nucleoside and nucleotides. Anal Biochem 111:67–71

    PubMed  Google Scholar 

  • Gallwitz D, Perrin F, Seidel R (1981) The actin gene in yeast Saccharomyces cerevisiae: 5′ and 3′ end mapping, flanking and putative regulatory sequences. Nucl Acids Res 9:6339–6350

    PubMed  Google Scholar 

  • Grivell AR, Jackson JF (1968) Thymidine kinase: Evidence for its absence from neurospora crassa and some other micro-organisms and the relevance of this to the specific labeling of deoxyribonucleic acid. J Gen Microbiol 54:307–317

    PubMed  Google Scholar 

  • Grunstein M, Hogness D (1975) Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965

    PubMed  Google Scholar 

  • Guo L-H, Wu R (1982) New rapid methods for DNA sequencing based on exonuclease III digestion followed by repair synthesis. Nucl Acids Res 10:2065–2084

    PubMed  Google Scholar 

  • Hartley JL, Donelson JE (1980) Nucleotide sequence of the yeast plasmid. Nature 286:860–865

    PubMed  Google Scholar 

  • Hattman S, Brooks JE, Masurerka M (1978) Sequence specificity of the P1 modification methylase (M Eco P1) and the DNA methylase (M Eco dam) controlled by the Escherichia coli dam gene. J Mol Biol 126:367–380

    PubMed  Google Scholar 

  • Henikoff S, Tatchell K, Hall BH, Nasmyth KA (1981) Isolation of a gene from Drosophila by complementation in yeast. Nature 289:33–37

    PubMed  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 3:279–292

    Google Scholar 

  • Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Ammerer G, Hall BD (1981) Expression of a human gene for interferon in yeast. 293:717–722

    Google Scholar 

  • Hitzeman RA, Hagie FE, Hayflick JS, Chen CY, Seeburg PH, Derynck R (1982) The primary structure of Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucl Acids Res 10:7791–7808

    PubMed  Google Scholar 

  • Hooland MJ, Holland JP (1979a) Isolation and characterization of a gene coding for glyceraldehyde-3-phosphate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem 254:5466–5474

    PubMed  Google Scholar 

  • Holland JP, Holland MJ (1979b) The primary structure of a glyceraldehyde-3-phosphate dehydrogenase gene from Saccharomyces cerevisiae. J Biol Chem 254:9839–9845

    PubMed  Google Scholar 

  • Holland JP, Holland MJ (1980) Structural comparison of two nontandemly repeated yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 255:2596–2605

    PubMed  Google Scholar 

  • Holland MJ, Holland JP, Thill GP, Jackson KA (1981) The primary structures of two yeast enolase genes. Homology between the 5′ noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 256:1385–1395

    PubMed  Google Scholar 

  • Jansen S, Wittie I, Megnet R (1973) Mutants for the specific labeling of DNA in Saccharomyces cerevisiae. Biochem Biophys Acta 299:681–685

    PubMed  Google Scholar 

  • Johnson PH, Grossman LI (1977) Electrophoresis of DNA in agarose gel optimizing separations of conformational isomers of double- and single-stranded DNA. Biochemistry 16:4217–4225

    PubMed  Google Scholar 

  • Kiss GB, Cornish KV, Pearlman RE, Friesen JD (1980) The herpes simplex virus thymidine kinase gene is not expressed in Saccharomyces cerevisiae. Recombinant DNA Technical Bulletin 3:21–24

    Google Scholar 

  • Kowalski D (1980) Fluorescence spot tests for DNA endonuclease ligase and topoisomerase activities. Anal Biochem 107:311–313

    PubMed  Google Scholar 

  • Kozak M (1981) Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucl Acids Res 9:5233–5252

    PubMed  Google Scholar 

  • Lehle L, Tanner W (1978) Biosynthesis and characterization of large dolichyl diphosphate-linked oligosaccharides in Saccharomyces cerevisiae. Biochem Biophys Acta 539:218–229

    PubMed  Google Scholar 

  • Little JG, Haynes RH (1979) Isolation and characterization of yeast mutants auxotrophic for 2′-deoxythymidine-5′-monophosphate. Mol Gen Genet 168:141–151

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Marko MA, Chippafield R, Birnboim HC (1982) A procedure for the large-scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder. Anal Biochem 121:382–387

    PubMed  Google Scholar 

  • McNeill JB, Friesen JD (1981) Expression of the herpes simplex virus thymidine kinase gene in Saccharomyces cerevisiae. Mol Gen Genet 184:386–393

    PubMed  Google Scholar 

  • McKnight SL, Crose C, Kingsbury R (1979) Introduction of isolated DNA sequences into cultured eukaryotic cells. Carnegie Inst Washington Yearbook 78:56–61

    Google Scholar 

  • McKnight SL (1980) The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucl Acids Res 8:5949–5964

    PubMed  Google Scholar 

  • McKnight SL, Gavis ER, Kingsbury R, Axel R (1981) Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: Identification of an upstream control region. Cell 25:385–398

    Article  PubMed  Google Scholar 

  • McKnight SL, Kingsbury R (1982) Transcriptional control signals of a eukaryotic protein-coding gene. Science 217:316–324

    PubMed  Google Scholar 

  • Mercereau-Puijalon O, Lacroute F, Kourilsky P (1980) Synthesis of a chicken ovalbumin-like protein in the yeast Saccharomyces cerevisiae. Gene 11:163–167

    Article  PubMed  Google Scholar 

  • Miller J (1974) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Norgard MW, Keem K, Monohan JJ (1978) Factors affecting the transformation of Escherichia coli strain chi 1776 by pBR322 plasmid DNA (Recombinant DNA; molecular cloning; cycloserine, vector DNA uptake). Gene 3:279–292

    Article  PubMed  Google Scholar 

  • Ratzkin B, Carbon J (1977) Functional expression of cloned yeast DNA in Escherichia coli. Proc Natl Acad Sci USA 74:487–491

    PubMed  Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, p 61–62: 92 for regeneration agar

  • Smiley JR, Swan H, Pater MM, Pater A, Halpern ME (1983) Positive control of the herpes simplex virus thymidine kinase gene requires upstream DNA sequences. J Virol 47:301–310

    PubMed  Google Scholar 

  • Smith M, Leung DW, Gillam S, Astell CR (1979) Sequence of the gene for the iso-1-cytochrome c in Saccharomyces cerevisiae. Cell 16:753–761

    Article  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, David RW (1979) High frequency transformation of yeast: Autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

    PubMed  Google Scholar 

  • Taylor JM, Illmensee R, Summers J (1976) Efficient transcription of RNA into DNA by avian sarcoma virus polymerase. Biochem Biophys Acta 442:324–330

    PubMed  Google Scholar 

  • Ullrich A, Shine J, Chirgwin J, Pictet R, Tischer E, Rutter WJ, Goodman HM (1977) Rat insulin genes: Construction of plasmids containing the coding sequences. Science 196:1313–1319

    PubMed  Google Scholar 

  • Waechter CJ (1976) The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem 45:95–112

    Article  PubMed  Google Scholar 

  • Wickner RB (1974) Mutants of Saccharomyces cerevisiae that incorporate deoxythymidine-5′-phosphate into deoxyribonucleic acid in vivo. J Bacteriol 117:252–260

    PubMed  Google Scholar 

  • Wieslander L (1979) A simple method to recover intact high molecular weight RNA and DNA after electrophoretic separation in low gelling temperature agarose gels. Anal Biochem 98:305–309

    PubMed  Google Scholar 

  • Wigler M, Silverstein S, Lee LS, Pellicer A, Cheng YC, Axel R (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11:223–232

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Fink

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, XL., Ward, C. & Weissbach, A. Control of Herpes simplex virus thymidine kinase gene expression in Saccharomyces cerevisiae by a yeast promoter sequence. Molec. Gen. Genet. 194, 31–41 (1984). https://doi.org/10.1007/BF00383493

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00383493

Keywords

Navigation