Skip to main content
Log in

Elastoplastic cracks moving in orthotropic crystals

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The stress field, crack-tip plastic zones and total plastic displacement created around an infinite row of collinear elastoplastic constant width Griffith-type strip cracks moving within an orthotropic crystal are considered using the powerful method of dislocation layers. The method is applied with the BCS modelled elastoplastic cracks moving under mode III loading at constant crack-tip velocity, according to the Yoffe model. Simultaneously the analysis provides solutions for a corresponding single crack moving similarly within a finite orthotropic plate and a finite plate containing a surface crack. Analogous results for the corresponding mode I, mode II and purely elastic cracks can be deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tait, R. J. and Moodie, T. B., Complex variable methods and closed form solutions to dynamic crack and punch problems in the classical theory of elasticity. Int. J. Engng. Sci. 19 (1981) 221–229.

    Article  MathSciNet  Google Scholar 

  2. Singh, B. M., Moodie, T. B. and Haddow, J. B., Closed-form solutions for finite length crack moving in a strip under anti-plane shear stress. Acta Mech. 38 (1981) 99–109.

    MathSciNet  Google Scholar 

  3. Georgiadis, H. G. and Theocaris, P. S., The Keldysh-Sedov method for a closed-form elastodynamic solution of the cracked strip under anti-plane shear. Int. J. Engng. Sci. 24 (1986) 1135–1140.

    Article  MathSciNet  Google Scholar 

  4. Boiko, A. V. and Karpenko, L. N., On an integral equation of the problem for an elastic strip with a slit. P.M.M. U.S.S.R. 51 (1987) 797–802.

    MathSciNet  Google Scholar 

  5. Sneddon, I. N. and Lowengrub, M., Crack Problems in the Classical Theory of Elasticity. New York: Wiley (1969).

    Google Scholar 

  6. Sih, G. C. (ed.), Mechanics of Fracture, Vol. 1, Methods of Analysis and Solutions of Crack Problems. Leyden: Noordhoff Int. Pub. (1973).

    Google Scholar 

  7. Bilby, B. A. and Eshelby, J. D., Dislocations and the theory of fracture. In: Liebowitz, H. (ed.), Fracture, Vol. 1. New York: Academic Press (1968) pp. 99–182.

    Google Scholar 

  8. Lardner, R. W., Mathematical Theory of Dislocations and Fracture. University of Toronto Press (1974).

  9. Bilby, B. A., Cottrell, A. H. and Swinden, K. H., The spread of plastic yield from a notch. Proc. Roy. Soc. A, 272 (1963) 304–314.

    ADS  Google Scholar 

  10. Hult, J. A. H. and McClintock, F. A., Elastic-plastic stress and strain distributions around sharp notches under repeated shear. Proc. 9th Int. Congress on Applied Mechs, Brussels 8 (1957) 51–58.

    Google Scholar 

  11. Dugdale, D. S., Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8 (1960) 100–104.

    Google Scholar 

  12. Goodier, J. N. and Field, F. A., Plastic energy dissipation in crack propagation. In: Drucker, D. C. and Gilman, J. J. (eds), Fracture of Solids. New York: Wiley (1963) pp. 103–118.

    Google Scholar 

  13. Leighton, J. T., Champion, C. R. and Freund, L. B., Asymptotic analysis of steady dynamic crack growth in an elastic-plastic material. J. Mech. Phys. Solids 35 (1987) 541–563.

    MathSciNet  Google Scholar 

  14. Bullough, R. and Bilby, B. A., Uniformly moving dislocations in anisotropic media. Phys. Soc. London 67B (1954) 615–626.

    ADS  MathSciNet  Google Scholar 

  15. Teutonico, L. J., Dynamical behaviour of dislocations in anisotropic media. Phys. Rev. 124 (1961) 1039–1045.

    Article  ADS  MATH  Google Scholar 

  16. Teutonico, L. J., Uniformly moving dislocations of arbitrary orientation in anisotropic media. Phys. Rev. 127 (1962) 413–418.

    Article  ADS  Google Scholar 

  17. Teutonico, L. J., Moving edge dislocations in cubic and hexagonal materials. Phys. Rev. 125 (1962) 1530–1533.

    Article  ADS  Google Scholar 

  18. Teutonico, L. J., Dynamical behaviour of dislocations in the primary slip systems of body-centered cubic crystals. J. App. Phys. 34 (1963) 950–955.

    Google Scholar 

  19. Weertman, J., Fast moving edge dislocations on the (110) plane in anisotropic body-centered—cubic crystals. Phil. Mag. 7 (1962) 617–631.

    MathSciNet  Google Scholar 

  20. Weertman, J., Fast moving edge dislocations on the (111) plane in anisotropic face-centered—cubic crystals. J. App. Phys. 33 (1962) 1631–1637.

    MathSciNet  Google Scholar 

  21. Yoffe, E. H., The moving Griffith crack. Phil. Mag. 42 (1951) 739–750.

    MATH  MathSciNet  Google Scholar 

  22. Tupholme, G. E., A study of cracks in orthotropic crystals using dislocation layers. J. Eng. Math. 8 (1974) 57–69.

    MATH  Google Scholar 

  23. Leibfried, G., Verteilung von versetzungen in statischen gleichgewicht. Z. Phys. 130 (1951) 214–226.

    MATH  MathSciNet  Google Scholar 

  24. Bilby, B. A., Cottrell, A. H., Smith, E. and Swinden, K. H., Plastic yielding from sharp notches. Proc Roy. Soc. A, 279 (1964) 1–9.

    ADS  Google Scholar 

  25. Muskhelishvili, N. I., Singular Integral Equations. Leyden: Noordhoff Int. Pub. (1953).

    Google Scholar 

  26. Gakhov, F. D., Boundary Value Problems. Oxford: Pergamon (1966).

    Google Scholar 

  27. Lardner, R. W. and Tupholme, G. E., Dislocation layers applied to moving crack problems. Int. J. Frac. 10 (1974) 113–119.

    Article  Google Scholar 

  28. Tupholme, G. E., Dislocation layers applied to moving cracks in orthotropic crystals. J. Elast. 4 (1974) 187–200.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tupholme, G.E. Elastoplastic cracks moving in orthotropic crystals. Appl. Sci. Res. 49, 91–99 (1992). https://doi.org/10.1007/BF00382745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382745

Keywords

Navigation