Skip to main content
Log in

Direct contact condensation of vapor on turbulent, falling liquid film

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The problem of condensation of pure vapor on turbulent falling liquid film of the same species is analytically solved. The gradual change in enthalpy of the coolant liquid film in the flow direction is considered to take place in three successive stages. The study brings out the influence of inlet Reynolds number, Prandtl number and degree of subcooling of the coolant on condensation heat transfer coefficients. The heat transfer coefficients predicted from the theoretical analysis are in reasonable agreement with the experimental data available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

specific heat of liquid at constant pressure

F :

variable defined in equation (12)

F t :

variable defined in equation (10)

Gr x :

Grashof number, gx 3(ρ−ρ v )/(v 2 ρ)

g :

gravitational constant

h fg :

latent heat of condensation

h x , hv m :

local and average condensation heat transfer coefficients respectively

k :

thermal conductivity of liquid

L :

length of the plate

L + :

S Gr 1/3 L /Pr

\(\dot m\) :

mass flow rate of liquid per unit width of the plate

Nu x :

local Nusselt number, (h x /k)[v 2 ρ/tg(ρ−ρ v )]1/3

Nu m :

average Nusselt number, (h m /k)[v 2 ρ/g(ρ−ρ v )]1/3

Pr:

Prandtl number

q :

heat flux in y-direction at x=x

R :

q w /q i

Re:

local film Reynolds number defined in equation (3)

Re L :

film Reynolds number at the exit on the downstream

Re c,x :

local condensate Reynolds number, (Re − Re o )

Re C,L :

condensate Reynolds number at the exit, (Re L − Re o )

Re t :

variable defined in equation (11)

S :

subcooling parameter, C p (T s −T o )/h fg

T :

temperature

T + :

dimensionless temperature, k(T−T o )u*/(q i v)

T + s :

k(T s −T o )u*/(q i v)

u :

velocity along the x direction

U + :

u/u*

u*:

(τ w )1/2

x :

downstream distance

X + :

dimensionless downstream distance, S Gr 1/3 x /Pr

x 1 :

maximum limiting length as defined in equation (27)

x 2 :

maximum limiting length as defined in equation (28)

y :

direction normal to the plate

Y + :

yu*/v

0:

inlet at x=0

i:

vapor-liquid interface

s :

saturation

w :

wall

L :

exit at x=L

δ :

local liquid film thickness

δ + :

δu*/v

δ t :

thermal penetration depth

δ + t :

δ t u*/v

ε :

eddy viscosity

ν :

kinematic viscosity of the liquid

λ :

parameter appearing in equation (1a), g(ρ − p v )δ/(u* 2 ρ)

μ :

dynamic viscosity of liquid

ρ :

density of liquid

ρ v :

density of vapor

τ :

shear stress

References

  • Blangetti, F.: Wanneubergang bei der Kondensation mit uberlagerter Konvektion im vertikalen Rohr, Dissertation, Univ. Karisruhe, Germany (1979).

    Google Scholar 

  • Chu, J.K. and Dukler, A.E.: Statistical characteristics of thin, wavy films. A.I.Ch.E. Journal 21 (1975) 583–593.

    Google Scholar 

  • Chun, K.R. and Seban, R.A.: Heat transfer to evaporating liquid films. J. Heat Transfer, Trans. ASME 96 (1971) 391–396.

    Google Scholar 

  • Dukler, A.E.: Fluid mechanics and heat transfer in vertical falling film systems. Chem. Engg. Progress Symposium Series 56(30) (1960) 1–10.

    Google Scholar 

  • Fulford, G.D.: The Flow of Liquid in Thin Films, Advances in Chem. Engg., Vol. 4, Academic Press (1964) pp. 151–236.

    Google Scholar 

  • Gorla, R.S., Ameri, A A and Ponter, A.B.: Unsteady heat transfer in falling liquid films. 8th Int. Heat Transfer Conference, San Fransisco, U.S.A. (1986) pp. 1943–1947.

  • Hasson, N.A.: Laminar flow along a vertical wall. J. Applied Mechanics, Trans. ASME 34 (1967) 535–537.

    Google Scholar 

  • Hubbard, G.L., Mills, A.F. and Chung, D.K.: Heat transfer across turbulent falling film with cocurrent vapor flow. J. Heat Transfer, Trans. ASME 98 (1976) 319–320.

    Google Scholar 

  • Jacobs, H.R., Direct contact condensers. Heat Exchanger Design Handbook, Vol. 2, New York: Hemisphere Publishing Corporation (1986).

    Google Scholar 

  • Katp, H., Nisbiwaki, N. and Hirata, M.: On the turbulent heat transfer by free convection from a vertical plate. Int. J. Heat Mass Transfer 11 (1968) 1117–1125.

    Google Scholar 

  • Krebs, R.G. and Schlunder, E.U.: Condensation with non-condensing gases inside vertical tubes with turbulent gas and film flow. Chem. Eng. Process 18 (1984) 341–356.

    Article  Google Scholar 

  • Limberg, H.: Wameubergang an Turbulente und Laminare Riselfilrne. Int. J. Heat Mass Transfer 16 (1973) 1691–1702.

    Article  MATH  Google Scholar 

  • Mills, A.F. and Chung, D.K.: Heat transfer across turbulent falling films. Int. J. Heat Mass Transfer 16 (1973) 694–696.

    Google Scholar 

  • Mudawwar, I.A. and El-Masri, M.A.: Momentum and heat transfer across freely-falling turbulent liquid films. Int. J. Multiphase Flow, 12(5) (1986) 771–790.

    Article  Google Scholar 

  • Murthy, N.S. and Sastry, V.M.K.: Accelerating laminar film along an inclined wall. Chem. Engg. Sci. 28 (1973) 869–874.

    Google Scholar 

  • Narayanamurthy, V. and Sarma, P.K.: A note on thin film evaporation-prediction of heat transfer rates. J. Chem. Engg. Japan 6(5) (1973) 457–459.

    Google Scholar 

  • Narayanamurthy, V. and Sarma, P.K.: A note on liquid film thickness under simultaneous action of shear and gravitational forces. Chem. Engg. Sci. 29 (1974) 1659–1660.

    Google Scholar 

  • Narayanamurthy, V. and Sarma, P.K.: A note on hydrodynamic entrance lengths of non-Newtonian laminar falling liquid films. Chem. Engg. Sci. 32 (1977) 566–567.

    Google Scholar 

  • Narayanamurthy, V. and Sarma, P.K.: Heat transfer to non-Newtonian laminar falling liquid film with smooth wave free gas-liquid interface. Int. J. Multiphase Flow 4 (1978a) 423–425.

    Google Scholar 

  • Narayanamurthy, V. and Sarma, P.K.: Dynamics of developing laminar non-Newtonian falling liquid films with free surface. J. Applied Mechanics, Trans. ASME 45 (1978b) 19–24.

    Google Scholar 

  • Rao, V.D. and Sarma, P.K.: Condensation heat transfer on laminar falling films. J. Heat Transfer, Trans. ASME 106 (1984) 518–523.

    Google Scholar 

  • Saibabu, J., Sarma, P.K., Dharma Rao, V. and Raju, G.J.V.J.: An experimental and theoretical investigation on dynamics and heating of turbulent falling liquid films. In: 8th Int. Heat Transfer Conference, San Fransisco, U.S.A. Hemisphere Publishing Corporation (1986) pp. 1963–1969.

  • Seban, R.A. and Faghri, A.: Evaporation and heating with turbulent falling liquid films. ASME. J. Heat Transfer 98 (1976) 315–318.

    Google Scholar 

  • Sideman, S. and Moalim-Meron, D.: Direct contact condensation. Advances in Heat Transfer 15 (1982) 228–276.

    Google Scholar 

  • Shmerler, J.A. and Mudawwar, I.A.: Local heat transfer coefficient in wavy free-falling turbulent liquid films undergoing uniform sensible heating. Int. J. Heat Mass Transfer 31 (1988a) 67–77.

    Google Scholar 

  • Shmerler, J.A. and Mudawwar, I.A.: Local evaporative heat transfer coefficient in turbulent free-falling films. Int. J. Heat Mass Transfer 31 (1988b) 731–742.

    Google Scholar 

  • Sykes, J.A. and Marchello, J.M.: Condensation of immiscible liquids on a horizontal tube. Ind. Eng. Chem. Process Des. Develop. 9 (1970) 63–71.

    Google Scholar 

  • Van Driest, E.R.: On turbulent flow near a wall. J. Aeron. Sci., 25 (1956) 1007–1011.

    Google Scholar 

  • Wilke, W.: Warmefibergang and Reiselfilme. Ver. Deut. Ingr. Forschungsh 490 (1962).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, V.D., Saibabu, J. & Sarma, P.K. Direct contact condensation of vapor on turbulent, falling liquid film. Appl. Sci. Res. 49, 31–48 (1992). https://doi.org/10.1007/BF00382741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382741

Keywords

Navigation