Skip to main content
Log in

Consecutive chemical reactions in a turbular reactor with turbulent flow

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Homogeneous consecutive chemical reactions in turbulent flow system is analyzed in this paper. Arbitrary chemical reaction order is considered. The governing nonlinear material balance equations are solved numerically on a digital computer. It is seen from the preliminary numerical results that high Reynolds and Schmidt numbers significantly increase both reaction velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c i :

concentration of i species, g. mole/cm3

C i :

dimensionless concentration of i species, c i /c A0

c A0 :

inlet concentration of A, g. mole/cm3

D i :

molecular diffusivity of i species, cm2/sec.

f :

Fanning friction factor

k 1 :

first reaction rate coefficient, (g. mole/cm3)1−m/sec.

k 2 :

second reaction rate coefficient, (g. mole/cm3)1−n/sec.

K 1 :

dimensionless first reaction rate coefficient, k 1 r 20 c −1 A0 /D A

K 2 :

dimensionless second reaction rate coefficient, k 2 r 20 c −1 A0 /D A

m :

order of the first chemical reaction

n :

order of the second chemical reaction

r :

radial distance, cm

r 0 :

reactor radius, cm

R :

dimensionless radial distance, r/r 0

Re:

Reynolds number, r 0 ū/ν

Sc:

Schmidt number, D/ν

u :

local velocity, cm

ū :

bulk velocity, cm

U :

dimensionless local velocity, u/ū

X, Y :

dimensionless concentrations of A and B, c i /c A 0

xxx0058;, xxx0059; :

dimensionless bulk concentrations of A and B

z :

axial distance, cm

Z :

dimensionless axial distance, zD A /r 20 ū

α :

ratio of eddy mass diffusivity to eddy viscosity, ε/ν

ε :

eddy mass diffusivity, cm2/sec.

ν :

kinematic viscosity, cm2/sec.

References

  1. Lyczkowski, R. W., D. Gidaspow and C. W. Solbrig, Chem. Eng. Prog. Sym posium Series 63 (1967) 1.

    Google Scholar 

  2. Villermaux, J., Int. J. Heat and Mass Transfer 14, (1971) 1963.

    Google Scholar 

  3. Wissler, E. H. and R. S. Schechter, Chem. Eng. Sci. 17 (1962) 937.

    Google Scholar 

  4. Lyczkowski, R. W., D. Gidaspow and C. W. Solbrig, AIChE J. 17 (1971) 497.

    Article  Google Scholar 

  5. Randhava, S. S. and D. T. Wasan, AIChE J. 17 (1971) 664

    Article  Google Scholar 

  6. Acrivos, A. and P. L. Chambre, Ind. Eng. Chem. 49 (1957) 1025.

    Google Scholar 

  7. Hudson, J. L., AIChE J. 11 (1965) 943.

    Google Scholar 

  8. Wissler, E. H. and R. S. Schechter, Appl. Sci. Res. A10 (1961) 198.

    Google Scholar 

  9. Hobler, T. Chemia Stosowana (Poland) 1 (1957) 21; abstracted in British Chem. Eng. 3 (1958) 329.

    Google Scholar 

  10. Strunk, M. R. and F. F. Tao, AIChE J. 10 (1964) 269.

    Google Scholar 

  11. Lapidus, L., Digital Computation for Chemical Engineers, McGraw-Hill, New York, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S.H. Consecutive chemical reactions in a turbular reactor with turbulent flow. Appl. Sci. Res. 27, 375–386 (1973). https://doi.org/10.1007/BF00382500

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382500

Keywords

Navigation