Skip to main content
Log in

Newtonian and non-Newtonian liquids rotating adjacent to a stationary surface

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The interaction of a rotating flow and a stationary surface is discussed for a second-order non-Newtonian liquid. Similarity solutions of the governing partial differential equations are obtained for the case of the outer flow in solid-body rotation. The results for the Newtonian case are compared with Bödewadt's series solution of this problem. The non-Newtonian solutions indicate that for certain values of the parameters characterizing the non-linear viscous response and normal stress effects a larger secondary flow is induced in the boundary layer than in the Newtonian case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bödewadt, U. T., Z. Angew. Math. u. Mech. 20 (1940) 241.

    Google Scholar 

  2. Kerrebrock, J. L. and R. V. Meghreblian, J. Aero. Sci. 28 (1961) 710.

    Google Scholar 

  3. Keyes, J. J., Jr. and W. K. Sartory, A study of nuclear-magnetohydrodynamic power generators, Oak Ridge National Laboratory, Oak Ridge (Tenn.) AECORNL-TM-1301, 1967.

    Google Scholar 

  4. Anderson, O. L., Theoretical solutions for the secondary flow on the end wall of a vortex tube, United Aircraft Corporation Research Laboratories, East Hartford (Conn.) R-2494-1, 1961.

    Google Scholar 

  5. King, W. S., Momentum-integral solutions for the laminar boundary layer on a finite disk in a rotating flow, Aerospace Corp., El Segundo (Cal.) ATN-63 (9227)-3, 1963.

    Google Scholar 

  6. Lewellen, W. S., Three-dimensional viscous vortices in incompressible flow, Ph.D. Dissertation, University of California, Los Angeles (Cal.), 1964.

    Google Scholar 

  7. Kidd, G. J., Jr. and G. J. Farris, J. Appl. Mech. 35 (1968) 209.

    Google Scholar 

  8. Farris, G. J., G. J. Kidd, Jr., D. W. Lick and R. E. Textor, J. Appl. Mech. 36 (1969) 687.

    Google Scholar 

  9. Chang, T. S. and C. W. Kitchens, Jr., J. Appl. Mech. 37 (1970) 557.

    Google Scholar 

  10. Nachtsheim, P. R. and P. Swigert, Satisfaction of asymptotic boundary conditions in numerical solution of systems of nonlinear equations of the boundary-layer type, NASA TN D-3004, 1965.

  11. Coleman, B. D. and W. Noll, Arch. Ratl. Mech. Anal. 6 (1960) 335.

    Google Scholar 

  12. Rivlin, R. S. and J. L. Ericksen, J. Ratl. Mech. Anal. 4 (1955) 323.

    Google Scholar 

  13. Markovitz, H. and B. D. Coleman, Adv. Appl. Mech. 8 (1964) 69.

    Google Scholar 

  14. Maxworthy, T., J. Appl. Mech. 35 (1968) 836.

    Google Scholar 

  15. Stewartson, K., Proc. Camb. Phil. Soc. 49 (1953) 333.

    Google Scholar 

  16. Schlichting, H., Boundary Layer Theory, 4th Edition, McGraw-Hill Book Co., 1960.

  17. Rogers, M. H. and G. N. Lance, J. Fluid Mech. 7 (1960) 617.

    Google Scholar 

  18. Kitchens, C. W., Jr., Vortex flows of second-order non-Newtonian liquids, Ph.D. Dissertation, North Carolina State University, Raleigh (N.C.), 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Also at North Carolina State University Raleigh (N.C.), U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitchens, C.W., Chang, T.S. Newtonian and non-Newtonian liquids rotating adjacent to a stationary surface. Appl. Sci. Res. 27, 283–296 (1973). https://doi.org/10.1007/BF00382492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382492

Keywords

Navigation