Solubility of carbon dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure

Abstract

Carbon dioxide solubilities in H2O-free hydrous silicate melts of natural andesite (CA), tholeiite (K 1921), and olivine nephelinite (OM1) compositions have been determined employing carbon-14 beta-track mapping techniques. The CO2 solubility increases with increasing pressure, temperature, and degree of silica-undersaturation of the silicate melt. At 1650° C, CO2 solubility in CA increases from 1.48±0.05 wt % at 15 kbar to 1.95±0.03 wt % at 30 kbar. The respective solubilities in OM1 are 3.41±0.08 wt % and 7.11±0.10 wt %. The CO2 solubility in K1921 is intermediate between those of CA and OM1 compositions. At lower temperatures, the CO2 contents of these silicate melts are lower, and the pressure dependence of the solubility is less pronounced. The presence of H2O also affects the CO2 solubility (20–30% more CO2 dissolves in hydrous than in H2O-free silicate melts); the solubility curves pass through an isothermal, isobaric maximum at an intermediate CO2/(CO2+H2O) composition of the volatile phase.

Under conditions within the upper mantle where carbonate minerals are not stable and CO2 and H2O are present a vapor phase must exist. Because the solubility of CO2 in silicate melts is lower than that of H2O, volatiles must fractionate between the melt and vapor during partial melting of peridotite. Initial low-temperature melts will be more H2O-rich than later high-temperature melts, provided vapor is present during the melting.

Published phase equilibrium data indicate that the compositional sequence of melts from peridotite +H2O+CO2 parent will be andesite-tholeiite-nephelinite with increasing temperature at a pressure of about 20 kbar. Examples of this sequence may be found in the Lesser Antilles and in the Indonesian Island Arcs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Boettcher, A.L., Mysen, B.O., Modreski, P.J.: Phase relationships in natural and synthetic periodite-H2O and peridotite-H2O-CO2 systems at high pressures. Phys. Chem. Earth, in press (1975)

  2. 2.

    Hamilton, D.L., Burnham, C.W., Osborn, E.F.: The solubility of water and effects of oxygen fugacity and water contents on crystallisation in mafic magmas. J. Petrol. 5, 21–39 (1964)

    Google Scholar 

  3. 3.

    Kushiro, I., Yoder, H.S., Jr., Nishikawa, M.: Effect of water on the melting of enstatite. Geol. Soc. Am. Bull. 79, 1685–1692 (1968)

    Google Scholar 

  4. 4.

    Kushiro, I.: The system-forsterite-diopside-silica with and without water at high pressures. Am. J. Sci. 267 A, 269–274 (1969)

    Google Scholar 

  5. 5.

    Mueller, R.F.: Oxidative capacity of magmatic components. Am. J. Sci. 270, 236–243 (1970)

    Google Scholar 

  6. 6.

    Kushiro, I.: Effect of water on the composition of magmas formed at high pressures. J. Petrol. 13, 311–334 (1972)

    Google Scholar 

  7. 7.

    Eggler, D.H.: Amphibole stability in H2O-undersaturated calc-alkaline melts. Earth Planet. Sci. Lett. 15, 28–34 (1972)

    Google Scholar 

  8. 8.

    Eggler, D.H.: Water saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in natural magma. Contrib. Mineral. Petrol. 34, 261–271 (1972)

    Google Scholar 

  9. 9.

    Holloway, J.R., Burnham, C.W.: Melting relations of basalt with equilibrium water pressure less than total pressure. J. Petrol. 13, 1–29 (1972)

    Google Scholar 

  10. 10.

    Burnham, C.W., Davis, N.F.: The role of H2O in silicate melts: I. P-V-T relations in the system NaAlSi3O8-H2O to 10 kilobars and 1000° C. Am. J. Sci. 270, 54–79 (1971)

    Google Scholar 

  11. 11.

    Burnham, C.W., Davis, N.F.: The role of H2O in silicate melts: II. Thermodynamic and phase relations in the system NaAlSi3O8-H2O to 10 kilobars, 700°–1100° C. Am J. Sci. 274, 902–940 (1974)

    Google Scholar 

  12. 12.

    Allen, J.C., Modreski, P.J., Haygood, C., Boettcher, A.L.: The role of water in the mantle of the earth: the stability of amphiboles and micas. Int. Geol. Congr., 24th, Montreal, Sect. 2, 231–240 (1972)

    Google Scholar 

  13. 13.

    Mysen, B.O., Boettcher, A.L.: Melting of a hydrous mantle. I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol. 16, 520–548 (1975)

    Google Scholar 

  14. 14.

    Mysen, B.O., Boettcher, A.L.: Melting of a hydrous mantle. II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen and carbon dioxide. J. Petrol. 16, 549–590 (1975)

    Google Scholar 

  15. 15.

    Eggler, D.H.: Role of CO2 in melting processes in the mantle. Carnegie Inst. Wash. Yearb. 72, 457–467 (1973)

    Google Scholar 

  16. 16.

    Eggler, D.H.: Effect of CO2 on compositions of silicate melts formed at high pressure (abstract). EOS 55, 480 (1974)

    Google Scholar 

  17. 17.

    Eggler, D.H.: Effect of CO2 on the melting of peridotite. Carnegie Inst. Wash. Yearb. 73, 215–224 (1974)

    Google Scholar 

  18. 18.

    Mysen, B.O., Eggler, D.H., Seitz, M.G., Holloway, J.R.: Carbon dioxide in silicate melts and crystals. Part I. Solubility measurements. Am. J. Sci. in press (1975)

  19. 19.

    Eggler, D.H., Mysen, B.O., Seitz, M.G.: The solubility of CO2 in silicate liquids and crystals. Carnegie Inst. Wash. Yearb. 73, 226–228 (1974)

    Google Scholar 

  20. 20.

    Mysen, B.O., Seitz, M.G.: Solubility of CO2 in Di-CO2 and Ab-CO2-H2O-Xe liquids at high P and T (abstract). Abstr. with Programs (Geol. Soc. Am), 6, 884 (1974)

    Google Scholar 

  21. 21.

    Mysen, B.O.: Solubility of volatiles in silicate melts at high pressure and temperature. The role of carbon dioxide and water in feldspar, pyroxene and feldspathoidal melts. Carnegie Inst. Wash. Yearb. 74, in press (1975)

  22. 22.

    Khitarov, N.I., Kadik, A.A.: Water and carbon dioxide in magmatic melts and pecularities of the melting process. Contrib. Mineral. Petrol. 41, 205–215 (1973)

    Google Scholar 

  23. 23.

    Yoder, H.S., Jr.: Phlogopite-H2O-CO2: An example of the multicomponent gas problem. Carnegie Inst. Wash. Yearb. 68, 236–240 (1969)

    Google Scholar 

  24. 24.

    Holloway, J.R., Reese, R.L.: The generation of N2-CO2-H2O fluids for use in hydrothermal experimentation. I. Experimental method and equilibrium calculations in the C-O-H-N system. Am Mineralogist 59, 587–597 (1974)

    Google Scholar 

  25. 25.

    Kesson, S.E., Holloway, J.R.: The generation of N2-H2O-CO2 fluids for use in hydrothermal experimentation. II. Melting of albite in a multi-species fluid. Am. Mineralogist 59, 598–603 (1974)

    Google Scholar 

  26. 26.

    Chayes, F.: The chemical composition of Cenozoic andesite. In: Proceedings of the Andesite Conference, A.R. McBirney, ed. Oreg. Dep. Geol. Miner. Ind. Bull. 65, 1–11 (1969)

  27. 27.

    Yoder, H.S., Jr., Tilley, C.E.: Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol. 3, 342–532 (1962)

    Google Scholar 

  28. 28.

    Brey, G., Green, D.H.: The role of CO2 in the genesis of olivine melilitite. Contrib. Mineral. Petrol. 49, 93–103 (1975)

    Google Scholar 

  29. 29.

    Eggler, D.H., Mysen, B.O.: The role of CO2 in the genesis of olivine melilitite: discussion. In preparation (1975)

  30. 30.

    Mysen, B.O., Seitz, M.G., Frantz, J.D.: Measurements of the solubility of carbon dioxide in silicate melts utilizing maps of carbon-14 beta activity. Carnegie Inst. Wash. Yearb. 73, 224–226 (1974)

    Google Scholar 

  31. 31.

    Mysen, B.O., Seitz, M.G.: Trace element partitioning determined by beta-track mapping-an experimental study with carbon and samarium as examples. J. Geophys. Res. 80, 2627–2636 (1975)

    Google Scholar 

  32. 32.

    Boyd, F.R., England, J.L.: Apparatus for phase equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750° C. J. Geophys. Res. 65, 741–748 (1960)

    Google Scholar 

  33. 33.

    Boyd, F.R., England, J.L.: Effect of pressure on the melting of diopside, CaMgSi2O6, and albite, NaAlSi3O8, in the range up to 50 kb. J. Geophys. Res. 68, 311–323 (1963)

    Google Scholar 

  34. 34.

    Kadik, A.A., Eggler, D.H.: Melt-vapor relations on the join NaAlSi3O8-H2O-CO2. Carnegie Inst. Wash. Yearb. 74, in press (1975)

  35. 35.

    Boettcher, A.L., Mysen, B.O., Allen, J.C.: Techniques for the control of water fugacity and oxygen fugacity for experimentation in solid-media high-pressure apparatus. J. Geophys. Res. 78, 5898–5902 (1973)

    Google Scholar 

  36. 36.

    Eggler, D.H., Mysen, B.O., Hoering, T.C.: Gas species in sealed capsules in solid-media, high-pressure apparatus. Carnegie Inst. Wash. Yearb. 73, 228–232 (1974)

    Google Scholar 

  37. 37.

    Pearce, M.L.: Solubility of carbon dioxide and variation of oxygen ion activity in soda-silica melts. J. Am. Ceram. Soc. 47, 362–367 (1967)

    Google Scholar 

  38. 38.

    Burnham, C.W.: Thermodynamics of melting in experimental silicate-volatile systems. Geochim. Cosmochim. Acta, in press (1975)

  39. 39.

    Boettcher, A.L., Wyllie, P.J.: Phase relationships in the system NaAlSiO4-SiO2-H2O to 35 kilobars pressure. Am. J. Sci. 267, 875–909 (1969)

    Google Scholar 

  40. 40.

    Mysen, B.O.: Solubility of CO2 in the system Na2O-Al2O3-SiO2-H2O-CO2 to 30 kbar (abstract). EOS 56, 469 (1975)

    Google Scholar 

  41. 41.

    Kushiro, I.: On the nature of silicate melt and its significance in magma genesis: regularities in the shift of liquidus boundaries involving olivine, pyroxene and silica minerals. Am. J. Sci. 275, 411–431 (1975)

    Google Scholar 

  42. 42.

    Eggler, D.H.: Peridotite-carbonate relations in the system CaO-MgO-SiO2-CO2. Carnegie Inst. Wash. Yearb. 74, in press (1975)

  43. 43.

    Newton, R.C., Sharp, W.E.: Stability of forsterite+CO2 and its bearing on the role of CO2 in the mantle. Earth Planet. Sci. Lett., in press (1975)

  44. 44.

    Kushiro, I., Satake, H., Akimoto, S.,: Carbonate-silicate reactions at high pressure and possible presence of dolomite and magnesite in the upper mantle. Earth Planet Sci. Lett., in press (1975)

  45. 45.

    Arculus, R.J., Curran, E.B.: The genesis of the calc-alkaline rock suite. Earth Planet. Sci. Lett. 15, 255–262 (1972)

    Google Scholar 

  46. 46.

    Cawthorn, R.G., Curran, E.B., Arculus, R.J.: A petrogenetic model for the origin of the calc-alkaline suite of Grenada, Lesser Antilles. J. Petrol. 14, 327–338 (1973)

    Google Scholar 

  47. 47.

    Sigurdsson, H., Tomblin, J.F., Brown, G.M., Holland, J.G., Arculus, R.J.: Strongly undersaturated magma in the Lesser Antilles island arc. Earth Planet. Sci. Lett. 18, 285–295 (1973)

    Google Scholar 

  48. 48.

    Van Bemmelen, R.W.: The geology of Indonesia, vol. 1 A, General geology. 732 pp. The Hague: Government Printing Office 1949

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mysen, B.O., Arculus, R.J. & Eggler, D.H. Solubility of carbon dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure. Contr. Mineral. and Petrol. 53, 227–239 (1975). https://doi.org/10.1007/BF00382441

Download citation

Keywords

  • Silicate
  • Olivine
  • Solubility Curve
  • Solubility Increase
  • Hydrous Silicate