Skip to main content
Log in

Expansion solution for subsonic compressible flow

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

An expansion solution in the physical plane is developed for subsonic compressible fluid flow past an obstacle. Assuming that the stream is inviscid, isentropic, irrotational and steady, it is shown that the velocity potential may be expressed as a series of homogeneous Heun functions and radial distance terms.

The basis of this analysis is Ludford's formal discussion of corresponding singularities in Bergman's Linear Integral Operator Method. A modification of these results permits reduction of the governing nonlinear partial differential equation to an ordinary, nonhomogeneous, linear differential equation.

The expansion solution is compared with the Rayleigh-Janzen method and the Prandtl-Glauert theory. The comparison indicates that this expansion gives better results than other methods currently used. The simplicity and economy of this expansion solution facilitates direct practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a i :

acceleration of fluid element, (ft/sec2)

a n (θ):

angle dependent function in expansion solution

A n :

integration constant

B n :

integration constant

b :

stream parameter

c :

local speed of sound, (ft/sec)

c 0 :

stagnation speed of sound, (ft/sec)

C :

closed curve of integration in (3)

C i :

integration constant

F :

Heun's homogeneous function

F i :

body force in the i-direction

F(x i):

equation of obstacle surface

g :

determinant of the fundamental tensors

g ij :

associated metric tensor

g ij :

fundamental metric tensor

H n (θ):

homogeneous Heun function determined by the index n

m :

source strength, (ft2/sec)

M 0 :

stagnation Mach number

M :

free stream Mach number

M :

local Mach number

n :

surface normal vector

N p :

number of index permutations

P(θ):

general term in ordinary differential equation (26)

p :

local pressure magnitude

q :

velocity magnitude (ft/sec)

Q(θ):

general term in ordinary differential equation (26)

R(θ):

remainder term defined by (30)

r :

radial polar coordinate (ft)

s :

entropy magnitude (ft2/sec20 R)

S :

surface area (ft2)

u 1 :

curvilinear surface coordinates (ft)

u 2 :

curvilinear surface coordinates (ft)

U i (x i):

free stream velocity function (ft/sec)

U :

free stream velocity magnitude (ft/sec)

v :

velocity magnitude (ft/sec)

v i :

velocity component in i-direction (ft/sec)

v(θ):

nonhomogeneous solution function used in (25)

\(\bar v_r \) :

radial velocity found by expansion solution (ft/sec)

\(\bar v_\theta \) :

angular velocity found by expansion solution (ft/sec)

w :

vorticity vector, (radians/sec)

x i :

curvilinear coordinates

y i :

alternate curvilinear coordinate

y n (θ):

homogeneous solution function used in (25)

Z :

transformed independent variable

i, j, k, l, n, p :

indices

α :

parameter in Heun's equation (21)

β :

Mach number parameter

γ :

ratio of specific heats

δ :

parameter in Heun's equation (21)

ρ :

local stream mass density

ρ 0 :

stream stagnation mass density

ε(r, θ):

disturbance velocity potential in (45)

η :

specific heat ratio parameter

θ :

angular polar coordinate (radians)

\(\bar \theta \) :

direction of the velocity vector (radians)

μ :

coefficient of stream viscosity

ξ :

complex variable

σ :

coefficient of bulk viscosity

φ :

velocity potential (ft2/sec)

φ 0 :

incompressible velocity potential (ft2/sec)

φ0:

velocity potential of expansion solution (ft2/sec)

φ*:

modified velocity potential

Γ :

circulation (ft2/sec)

Γ 0 :

constant circulation magnitude (ft2/sec)

ψ :

stream function (ft2/sec)

ψ*:

modified stream function

[ij, k]:

Christoffel three-index symbol of the first kind

\(\mathop {jk}\limits^i \) :

Christoffel three-index symobl of the second kind

References

  1. Sokolnikoff, I. S., Tensor analysis, John Wiley and Sons, Inc., New York, 1964, 349

    Google Scholar 

  2. Aris, R., Vectors, tensors, and the basic equations of fluid mechanics, Englewood Cliffs, Prentice-Hall, Inc., New Jersey, 1962, 107.

    Google Scholar 

  3. Flugge, W., ed., Handbook of engineering mechanics, McGraw Hill Book Co., 1962, 68.

  4. Sokolnikoff, I. S., Tensor analysis, John Wiley and Sons, Inc., New York, 1964, 346.

    Google Scholar 

  5. Flugge, W., ed., Handbook of engineering mechanics, McGraw Hill Book Co., 1962, 68.

  6. Bers, L., Mathematical aspects of subsonic and transonic gas dynamics, John Wiley and Sons, Inc., New York, 1958, 10.

    Google Scholar 

  7. Ludford, G. S., J. Math. Phys., 30 (1952) 117.

    MathSciNet  Google Scholar 

  8. Riaborichinsky, D. P., Partial Differential Equations and Continuum Mechanics, Langer, R. E., ed., Madison, Wisconsin, The University of Wisconsin Press, c. 1961, p. 271.

    Google Scholar 

  9. Heun, K., Mathematische Annalen, 33 (1889) 161.

    MATH  MathSciNet  Google Scholar 

  10. Babister, A. W., Transcendental functions, The Macmillan Co., New York, 1967, 283.

    Google Scholar 

  11. Imai, I., Approximation methods in compressible fluid dynamics, Tech. Note BN-95, Office of Naval Research, 1956, 174.

  12. Lighthill, M. H. Higher approximations in aerodynamics theory, Princeton University Press, Princeton, New Jersey, 1960, 12.

    Google Scholar 

  13. Korn, G. A. and T. M. Korn, Mathematical handbook for scientists and engineers, McGraw Hill Co., New York, 1961, 175.

    Google Scholar 

  14. Korn, G. A. and T. M. Korn, Mathematical handbook for scientists and engineers, McGraw Hill Co., New York, 1961, 189.

    Google Scholar 

  15. Ashley, H. and M. T. Landahl, Aerodynamics of wings and bodies, Addison-Wesley Publishing Co., Reading, Mass., 1965, 81–119.

    Google Scholar 

  16. von Mises, R., Mathematical theory of compressible fluid flow, Academic Press, Inc., New York, 1958, 363.

    Google Scholar 

  17. Shapiro, A. H., The dynamics and thermodynamics of compressible fluid flow, The Ronald Press Co., New York, 1953, Vol. 1, 338.

    Google Scholar 

  18. Krzywobloki, M. Z. V., Bergman's linear integral operator method in the theory of compressible fluid flow, Springer-Verlag, Wien, Austria, 1960, 148.

    Google Scholar 

  19. Van Dyke, M. C., Perturbation methods in fluid mechanics, Academic Press, New York, 1964, 1.

    Google Scholar 

  20. Uehara, T., Yl Iri, and M. Iri, Int. J. Engng. Sci., 1, (1973) 497–505.

    MathSciNet  Google Scholar 

  21. Wang, C., Two-dimensional subsonic compressible flow past arbitrary bodies by the variational method, NACA TN 2326, 1961.

  22. Emmons, H. W., The numerical solution of compressible flow problems, NACA TN 932, 944.

  23. Krzywobloki, M., Determining air reactions on moving vehicles, WADC Tech. Rept. 56-56, Part III, 1959() 140.

  24. Tricomi, F. G., Partial Differential Equations and Continuum Mechanics, Langer, R. E., ed., Madison, Wisconsin, The University of Wisconsin Press, c. 1961, p. 124.

    Google Scholar 

  25. Schlichting, H., Boundary layer theory, McGraw Hill Book Company, New York, 1960, fourth edition, p. 9.

    Google Scholar 

  26. Shapiro, A. H., The dynamics and thermodynamics of compressible fluid flow, The Ronald Press Co., New York, 1953, Vol. 1, 266.

    Google Scholar 

  27. Lighthill, J. J., Higher approximations in aerodynamics theory, Princeton University Press, Princeton, New Jersey, 1960, 28.

    Google Scholar 

  28. Whalen, P. J., Expansion solution for subsonic compressible flow, Master's Thesis, New Mexico State University, 1969.

  29. Flugge, W., ed., Handbook of engineering mechanics, McGraw Hill Book Co., New York, 1962, 75.

    Google Scholar 

  30. Shapiro, A. H., The dynamics and thermodynamics of compressible fluid flow, The Ronald Press Co., New York, 1953, Vol. 1, 344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whalen, P.J., Mulholland, G.P. Expansion solution for subsonic compressible flow. Appl. Sci. Res. 25, 445–473 (1972). https://doi.org/10.1007/BF00382316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382316

Keywords

Navigation