Skip to main content
Log in

Thermally developing laminar flows with radiative interaction using the total band absorptance model

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The problem of energy transfer in a thermally developing, radiating and conducting medium is studied. In particular, laminar flow of carbon monoxide is considered although the results may be interpreted more generally as referring to any infra red radiating diatomic gas. The effects of radiation and conduction on the temperature profile and the Nusselt number are presented for slug flow and for the parabolic velocity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

constant equal to 0.9

A :

total band absorptance

A′ :

derivative of the total band absorptance

A 0 :

correlation constant

b :

constant equal to 1.8

C 0,w :

correlation constant

c p :

specific heat at constant pressure

D h :

hydraulic diameter, 2H

e w :

Planck's function

e ww :

Planck's function evaluated at the wall

e ww, e :

Planck's function evaluated at the wall at the band center

H :

plate spacing

k :

thermal conductivity

K w :

spectral absorption coefficient

k p, w :

Planck coefficient evaluated at the wall

p :

pressure

Pr :

Prandtl number μc p /k

q R :

radiation heat flux

Re :

Reynolds number, V b D h ρ/μ

T :

temperature

T + :

dimensionless temperature

u :

axial velocity

u + :

dimensionless axial velocity

v :

independent variable

V b :

bulk velocity

x :

axial coordinate

x + :

dimensionless axial coordinate

y :

transverse coordinate

y + :

dimensionless transverse coordinate

z :

dummy variable

ρ :

density

σ :

Stefan-Boltzmann constant

μ :

absolute viscosity

ω :

wave number

References

  1. Greif, R. and D. M. McEligot, “Heat Transfer in Thermally Developing Laminar Flows with Optically Thin Radiation”, to be published in J. Heat Transfer.

  2. Timofeyev, V. N., F. R. Shklyar, V. M. Malkin and A. Kh. Berland, Heat Transfer, Soviet Research, 1, 6 (1969) 84.

    Google Scholar 

  3. Kurosaki, Y., Heat Transfer by Simultaneous Radiation and Convection in an Absorbing and Emitting Medium in a Flow between Parallel Plates, R 2.5 Fourth International Heat Transfer Conference, Paris, Vol. III, 1970.

  4. de Soto, S., Int. J. Heat Mass Transfer 11 (1968) 39.

    Google Scholar 

  5. Edwards, D. K. and W. A. Menard, Appl. Optics 3 (1964) 847.

    ADS  Google Scholar 

  6. Pearce, B. E. and A. F. Emery, J. Heat Transfer 92 (1970) 221.

    Google Scholar 

  7. Edwards, D. K. and W. A. Menard, Appl. Optics 3 (1964) 621.

    ADS  Google Scholar 

  8. Tien, C. L., Thermal radiation properties of gases, Advances in Heat Transfer, Vol. 4, Academic Press, New York 1968.

    Google Scholar 

  9. Cess, R. D., P. Mighdoll and S. N. Tiwari, Int. J. Heat Mass Transfer 10 (1967) 1521.

    Google Scholar 

  10. Wilson, K. H. and R. Greif, J. Quant. Spect. Rad. Transfer 8 (1968) 1061.

    Google Scholar 

  11. Wang, L. S., J. Quant. Spect. Rad. Transfer 8 (1968) 851.

    Google Scholar 

  12. Sparrow, E. M. and R. D. Cess, Radiation Heat Transfer, Brooks/Cole Publishing Company, Belmont, Calif., 1966.

    Google Scholar 

  13. Viskanta, R., Advances in Heat Transfer, Irvine, T. F., Jr. and Hartnett, J. P., eds., Vol. III, Academic Press, New York, 1966, pp. 175–251.

    Google Scholar 

  14. Greif, R. and I. S. Habib, J. Heat Transfer 91 (1969) 282.

    Google Scholar 

  15. Tien, C. L. and G. R. Ling, Int. J. Heat Mass Transfer 12 (1969) 1179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the University of California, Berkeley.

On leave from the University of Arizona, Tucson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greif, R., McEligot, D.M. Thermally developing laminar flows with radiative interaction using the total band absorptance model. Appl. Sci. Res. 25, 234–244 (1972). https://doi.org/10.1007/BF00382298

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382298

Keywords

Navigation