Skip to main content
Log in

On the filamentary nature of laser action

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

Many solid-state lasers show features which have not been predicted by the prevalent laser theories. The laser action in a ruby crystal usually produces a spotty pattern on the end faces, and the output exhibits relaxation oscillations in a random manner. These properties are closely connected with one another through the filamentary nature of the laser action. The theory for a Fabry-Perot interferometer with rectangular mirrors and a large Fresnel number is outlined. It is demonstrated that the observable single mode patterns are in the form of parabolic cylinder functions (Gaussian distribution of intensity for lowest-order eigenmode) and not of cosine and sine functions as is widely believed. This theoretical result predicts the filamentary nature of the laser action between plane parallel end faces and suggests that the irregular spiking behavior of a solid-state laser may be considered a superposition of outputs from several filaments. If the laser is operated only slightly above threshold the relaxation oscillations die away faster than predicted by the linearized Statz and deMars equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schawlow, A. L. and C. H. Townes, Phys. Rev.112 (1958) 1940.

    Google Scholar 

  2. Collins, R. J., D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett and W. Kaiser, Phys. Rev. Letters5 (1960) 303.

    Google Scholar 

  3. Nelson, D. F. and R. J. Collins, J. Appl. Phys.4 (1961) 739.

    Google Scholar 

  4. Nelson, D. F. and R. J. Collins, “The Polarization of the Output from a Ruby Optical Maser”; Advances in Quantum Electronics, pp. 79–82, Columbia University Press, New York and London, 1961.

    Google Scholar 

  5. Hercher, M., Appl. Optics1 (1962) 665.

    Google Scholar 

  6. Tonks, L., J. Appl. Phys.33 (1962) 1980.

    Google Scholar 

  7. Evtuhov, V. and J. K. Neeland, Appl. Optics1 (1962) 517.

    Google Scholar 

  8. Evtuhov, V. and J. K. Neeland, “Characteristics of Ruby Laser Modes in a Nominally Plane Parallel Resonator”; Quantum Electronics, Paris 1963 Conference, Vol. 2, pp. 1405–1414, Columbia University Press, New York 1964.

    Google Scholar 

  9. Leontovich, A. M. and A. P. Veduta, Sov. Phys. JETP,19 (1964), 51.

    Google Scholar 

  10. Stickley, C. M., Appl. Optics3 (1964) 967; also Physical Sciences Research Papers, No. 19, AFCRL-64-434, May 1964 (Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Mass.).

    Google Scholar 

  11. Statz, H. and G. deMars, “Transients and Oscillation Pulses in Masers”; Quantum Electronics, ed. by C. H. Townes, pp. 530–537, Columbia University Press, New York, 1960.

    Google Scholar 

  12. Sorokin, P. P. and M. J. Stevenson, “Stimulated Emission from CaF2: U+3 and CaF2 : Sm+2”; Advances in Quantum Electronics, ed. by J. R. Singer, pp. 65–76, Columbia University Press, New York and London, 1961.

    Google Scholar 

  13. Lotsch, H., Phys. Letters12 (1964) 99; also Phys. Letters16 (1965) 45.

    Google Scholar 

  14. Lotsch, H., Bull. Amer. Phys. Soc. Series II9 (1964) 729.

    Google Scholar 

  15. Lotsch, H., Phys. Letters11 (1964) 221.

    Google Scholar 

  16. Lotsch, H., Z. Naturforschung20a (1965) 38.

    Google Scholar 

  17. Meixner, J. and F. W. Schaefke, Mathieusche Funktionen und Sphaeroidfunktionen, Springer-Verlag, Berlin, Goettingen, Heidelberg, 1954.

    Google Scholar 

  18. Lotsch, H., Z. angew. Phys.19 (1965) 162.

    Google Scholar 

  19. Hughes, T. P. and K. M. Young, Nature196 (1962) 332.

    Google Scholar 

  20. Kisliuk, P. and D. J. Walsh, Appl. Optics1 (1962) 45; see also Weisman, D., Appl. Optics1 (1962) 672.

    Google Scholar 

  21. Dayhoff, E. S., Proc. IRE50 (1962) 1684.

    Google Scholar 

  22. Tang, C. L., H. Statz and G. deMars, Appl. Phys. Letters2 (1963) 222.

    Google Scholar 

  23. Crowe, J. W., Paper WB 13, Spring Mtg. Optical Society of America, Jacksonville, Florida, March 1963; see J. Opt. Soc. of America53 (1963) 522.

  24. Dayhoff, E. S., “The Emission Mode Patterns of Ruby Lasers”; Proceedings of the X-th Colloquium Spectroscopicum Internationale, pp. 421–436.

  25. Dayhoff, E. S., “Transverse Mode Patterns in Neodymium Glass and Ruby”; Quantum Electronics, Paris 1963 Conference, Vol. 2, pp. 1445–1451, Columbia University Press, New York, 1964.

    Google Scholar 

  26. Stitch, M. L., E. J. Woodbury and J. H. Morse, “Stimulation versus Emission in Ruby Optical Masers”; Advances in Quantum Electronics, pp. 83–84, Columbia University Press, New York and London, 1961.

    Google Scholar 

  27. Stickley, C. M., Appl. Optics2 (1963) 855.

    Google Scholar 

  28. Bortfeld, D. P., R. S. Congleton, M. Geller, R. S. McComas, L. D. Riley, W. R. Sooy and M. L. Stitch, J. Appl. Phys.35 (1964) 2267.

    Google Scholar 

  29. Li, T. and S. D. Sims, Proc. IRE50 (1962) 464.

    Google Scholar 

  30. Devlin, G. E., J. McKenna, A. D. May and A. L. Schawlow, Appl. Optics1 (1962) 11.

    Google Scholar 

  31. McKenna, J., Appl. Optics2 (1963) 303.

    Google Scholar 

  32. Svelto, O. and M. DiDomenico, Appl. Optics2 (1963) 431.

    Google Scholar 

  33. Sooy, W. R. and M. L. Stitch, J. Appl. Phys.34 (1963) 1719.

    Google Scholar 

  34. Dunsmuir, R., J. Electr. Control10 (1961) 453.

    Google Scholar 

  35. Birnbaum, M., T. Stocker and S. J. Welles, Proc. IEEE51 (1963) 854.

    Google Scholar 

  36. Roess, D., Z. Naturforschung19a (1964) 1169.

    Google Scholar 

  37. Shimoda, K., “Amplitude and Frequency Variations in Ruby Optical Masers”;Optical Masers, MRI Symposia Series, Vol. XIII, ed. J. Fox, pp. 95–108, Wiley-Interscience, New York, 1963.

    Google Scholar 

  38. Korpel, A. and J. Free, Proc. IEEE52 (1964) 619.

    Google Scholar 

  39. Roess, D., Frequenz17 (1963) 61.

    Google Scholar 

  40. Roess, D., Proc. IEEE52 (1964) 196.

    Google Scholar 

  41. Lotsch, H., “A Modified Fabry-Perot Interferometer as a Discrimination Filter and a Modulator for Longitudinal Modes”; Scientific Report No. 2, AFCRL-62-748, Quantum Electronics Laboratory, California Institute of Technology, Pasadena, California, September 1, 1962.

    Google Scholar 

  42. Lotsch, H., Jap. J. Appl. Phys.4 (1965) 435.

    Google Scholar 

  43. Siegman, A. E., “Small Mirror Transverse-Mode Control and Near-Field Rings in Ruby-Laser Rod”; Paper TB 14, Spring Meeting, Optical Society of America, Washington, D.C., April 1964; see J. Opt. Soc. America54 (1964) 567.

    Google Scholar 

  44. Lotsch, H., Proc. IEEE53 (1965) 398.

    Google Scholar 

  45. Lotsch, H., Physica31 (1965) 1796.

    Google Scholar 

  46. Siegman, A. E., Stanford University, Stanford, California (private communication).

  47. Welling, H., C. J. Bickart and H. G. Andresen, IEEE Journal of Quantum Electronics1 (1965) 223.

    Google Scholar 

  48. Lotsch, H., Ann. der Physik (7)16 (1965) 7.

    Google Scholar 

  49. Roess, D., ‘Optical Pumping Systems and CW Ruby Lasers’ WINCON '66, Los Angeles, California, February 2–4, 1966, Conference Record, pp. IIIB-6 to IIIB-11

  50. Roess, D., Z. Naturforschung20a (1965) 1348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotsch, H.K.V. On the filamentary nature of laser action. Appl. Sci. Res. 12, 451–469 (1965). https://doi.org/10.1007/BF00382138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382138

Keywords

Navigation