Skip to main content
Log in

Combined thermal convective magneto-hydrodynamic flow

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

The role of combined natural and forced thermal convection in the flow of an electrically conducting fluid through a magnetic field is analyzed. The conditions under which the magnetic field renders the free convective contribution to the total thermal exchange negligible are discussed. Effects of wall electrical conductivity, magnetic field strength, internal energy generation, free convection, and thermal Prandtl number on the flow and heat transfer are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

half-width of channel

a m :

Fourier coefficient

A :

temperature gradient, defined in equation (21)

b :

half-breath of channel

B :

magnetic flux density vector

B :

dimensionless magnetic flux density,B = B x/B 0 C

c :

heat capacity

C :

parameter defined as\((a^3 c/vk)/\left( { - \frac{{\partial p}}{{\partial x}} - \rho g} \right)\)

C*:

parameter defined as\((a^3 c/vk)/\left( { - \frac{{\partial p}}{{\partial x}} - \rho g + \sigma B_0 E_0 } \right)\)

D :

dielectric displacement vector

E :

electric field intensity vector

F :

internal energy generation index,F = Qa/kAC

F*:

internal energy generation index,F* = Qa/kAC*

g,g :

gravitational acceleration magnitude, vector

G∞G*:

mean flow rate-pressure gradient ratio, defined in equations (42), (62)

h :

thickness of channel walls

H :

magnetic field strength vector

J :

current density vector

k :

thermal conductivity

M :

Hartmann number,aB 0(σ/μ)1/2

m, n :

summation indices

Pr :

thermal Prandtl number,ρνc/k

Pr m :

magnetic Prandtl number,σμ 0 ν

p :

pressure

p 1(y, z):

pressure function defined in equation (24)

Q :

internal volumetric energy generation rate

Ra :

Rayleigh number,Ra = gβρCa 4 A/vk

Rm :

magnetic Reynolds' number,Rm = μ0σaū

t :

time

T, T B :

temperature, bulk fluid temperature

u :

local velocity inx-direction

ū :

mean velocity inx-direction

U :

dimensionless form ofu,U = apcu/kC

V :

velocity field vector

x, y, z :

rectangular coordinates

α i :

integration constants defined in Appendix B

i :

1 to 6

β :

thermal expansion coefficient

γ :

aspect ratio,b/a

ε 0 :

inductive capacity

ζ :

dimensionless form ofz, ζ=z/a

η :

dimensionless form ofy, η=y/a

θ :

dimensionless temperature difference,θ =(T − T) w)/aAC

κ, τ′, κ i :

integration constants

λ i :

parameters defined in Appendix A

μ 0 :

magnetic permeability

ν :

kinematic viscosity

ρ :

mass density

ρe :

charge density

σ :

electrical conductivity

Φ :

viscous dissipation term

φ, φ 1,φ 2 :

wall electrical conductance ratios

mn :

double Fourier transform

m orn :

single Fourier transform

w :

wall conditions

x, y, z :

scalar component inx, y, z direction

0:

applied value

∞:

parallel-plate case

*:

small magnetic Prandtl number case

References

  1. Hartman, J., Hg-Dynamics I, Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field, Kgl. Danske Videnslabernes Selskab, Math. Fys. Medd.15 No. 6 (1937).

  2. Shercliff, J. A., Proc. Camb. Phil. Soc.49 (1953) 136–144.

    Google Scholar 

  3. Shercliff, J. A., J. Fluid Mech.1 (1956) 644–666.

    Google Scholar 

  4. Uflyand, Ya. S., Soviet Phys.-Tech. Phys.5 (1960) 1191–1193.

    Google Scholar 

  5. Chekmarev, I. B., Soviet Phys.-Tech. Phys.5 (1960) 313–319.

    Google Scholar 

  6. Chang, C. C. and T. S. Lundgren, The Flow of an Electrically Conducting Fluid Through a Duct with Transverse Magnetic Field, Proc. 1959 Heat Transf. Fluid Mech. Inst., 41–54.

  7. Chang, C. C. and T. S. Lundgren, Z. Angew. Math. u. Phys.12 (1961) 100–114.

    Google Scholar 

  8. Chang, C. C. and J. T. Yen, Z. Angew. Math. u. Phys.13 (1962) 266–272.

    Google Scholar 

  9. Yen, J. T., Effect of Wall Electrical Conductance on Magneto-hydrodynamics Heat Transfer in a Channel, ASME Paper No. 62-WA-171, 1962.

  10. Smirnov, A. G., Soviet Phys.-Tech. Phys.4 (1959) 1141–1147.

    Google Scholar 

  11. Poots, G., Int. J. Heat Mass Transfer3 (1961) 1–25.

    Google Scholar 

  12. Osterle, J. F. and F. J. Young, J. Fluid Mech.11 (1961) 512–518.

    Google Scholar 

  13. Mori, Y., On Combined Free and Forced Convective Laminar Magnetohydrodynamic Flow and Heat Transfer in Channels with Transverse Magnetic Field, Intl. Devel. Heat Transfer, part V, pp. 1031–1037, 1961.

  14. Regirer, S. A., Zh. Eksper. i Teoret. Fiz.37 (1959) 212–216.

    Google Scholar 

  15. Regirer, S. A., Zh. Prek. Mekh. i Tekh. Fiz.1 (1962) 15–19.

    Google Scholar 

  16. Alpher, R. A., Intl. J. Heat Mass Transfer3 (1961) 108–112.

    Google Scholar 

  17. Perlmutter, M. and R. Siegel, Heat Transfer to an Electrically Conducting Fluid Flowing in a Channel with a Transverse Magnetic Field, NASA TN D-875 (1961).

  18. Shohet, J. L., Phys. Fluids5 (1962) 879–884.

    Google Scholar 

  19. Globe, S., Phys. Fluids2 (1959) 404–407.

    Google Scholar 

  20. Cambel, A. B., Plasma Physics and Magnetofluidmechanics, pp. 32–55, McGraw-Hill, New York, 1963.

    Google Scholar 

  21. Elsasser, W. M., Phys. Rev.95 (1954) 1–5.

    Google Scholar 

  22. Ostrach, S., Combined Natural- and Forced-Convection Laminar Flow and Heat Transfer of Fluids with and without Heat Sources in Channels with Linearly Varying Wall Temperatures, NACA TN 3141 (1954).

  23. Ryabinin, A. G. and A. I. Khozhainov, Soviet Phys.-Tech. Phys.7 (1962) 9–13.

    Google Scholar 

  24. Han, L. S., Trans. ASME,81, series C. J. Heat Transfer (1959) 121–128.

    Google Scholar 

  25. Churchill, R. V., Operational Mathematics, 2nd. ed., pp. 288–320, McGraw-Hill New York, 1958.

    Google Scholar 

  26. Singer, R. M., A Study of Convective Magnetohydrodynamic Channel Flow, Argonne National Laboratory Report, ANL-6967 (Jan. 1965).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the U.S. Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, R.M. Combined thermal convective magneto-hydrodynamic flow. Appl. Sci. Res. 12, 375–404 (1965). https://doi.org/10.1007/BF00382134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382134

Keywords

Navigation