Skip to main content
Log in

Magnetohydrodynamic circulation of a liquid of finite conductivity in an annulus

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

Unsteady circulation of an incompressible fluid of finite conductivity between two infinite concentric cylinders under the influence of a radial magnetic field is considered). Three cases are treated: (1) an external axial electric field is imposed, while the walls remain stationary; (2) and (3) no external electric field is imposed, but the walls either rotate at constant angular velocities, or oscillate sinusoidally. It is shown that none of the variables are dependent upon axial or angular position, and that the radial magnetic field component is independent of the fluid motion. These fortunate circumstances result in a coupled linear system of equations for the fluid velocity and the tangential magnetic field component. They are uncoupled by assuming the induced electric field to be space — independent at every instant. This is exact for steady flows. Zero and first-order approximate solutions may then be obtained either by neglecting the induced electric field, or by satisfying conservation of charge requirements. It is shown that neglect of the induced electric field is permissible only at small Hartmann numbers. An interesting feature of the solution is that the orthogonal expansion is in terms of Bessel functions whose order depends upon the Hartmann number, and hence may be arbitrarily large. Finally, it is thought that the first flow may find application in a novel viscometer for monitoring physical property variations in remote, hazardous, or highly reactive fluid systems. Some numerical examples are presented in support of the feasibility of such a device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B, b :

magnetic flux vector; gauss, dimensionless

B 0 :

magnetic flux density at outer radius

C 1,C 2 :

constants defined by (2.3.8)

D :

dielectric displacement

E, e :

electric field intensity vector; abvolt/cm, dim.

e, e i, e0 :

total, induced, and external axial electric field components; dim.

G, g :

gravitational acceleration; cm/sec2, dim.

h :

height of co-axial cylinders; cm

H :

magnetic field intensity; oersted

J, j :

current density; abvolt/cm2, dim.

L :

annular gap width; cm

M H :

Hartmann number; dim.

M 0 :

moment on outer cylinder; dyne - cm

m :

order of Bessel functions, defined by (2.3.9)

N R :

Reynolds number

r :

radial co-ordinate in cylindrical system; cm

R :

inside radius of outer cylinder; cm

R M :

magnetic Reynolds number

s :

dimensionless radial co-ordinate

t :

time; sec

V, ν :

velocity vector; cm/sec, dim.

V 0 :

radius average velocity; cm/sec

Z, z :

longitudinal co-ordinate; cm, dim.

β = 1 - γ:

dimensionless inner radius

Γ, γ :

shear stress; dyne/cm2, dim.

ε :

dielectric constant

ζ i :

positive roots of Eq. (A.3)

η :

magnetic diffusivity for momentum, cm2/sec

θ :

azimuthal co-ordinate in cylindrical system; rad

γ =L/R :

dimensionless annular gap width

μ :

magnetic permeability; abhenry/cm

ν :

kinematic viscosity; cm2/sec

ρ :

fluid density; gm/cm3

σ :

fluid conductivity; abmho/cm

τ :

dimensionless time

r, θ, z :

denote components in cylindrical co-ordinates

References

  1. Bickley, W. G. and J. C. P. Miller, Phil. Mag.34 (1943) 35.

    Google Scholar 

  2. Bird, R. B. and C. F. Curtiss, Chem. Engrg. Sci.11 (1959) 108.

    Google Scholar 

  3. Chang, C. C. and T. S. Lundgren, Z. angew. Math. Phys.12 (1961) 100.

    Google Scholar 

  4. Chang, C. C. and J. T. Yen, Phys. Fluids2 (1959) 393.

    Google Scholar 

  5. Chekmarev, I. B., Scientific-Tech. Information Bul. no. 8, Leningrad Polytech. Inst., Radzdel fiz.-mat. nauk., 1959.

  6. Cowling, T. G., Magnetohydrodynamics, Interscience, New York, 1957.

    Google Scholar 

  7. Globe, S., Phys. Fluids2 (1959) 404.

    Google Scholar 

  8. Globe, S., Phys. Fluids3 (1960) 665.

    Google Scholar 

  9. Gold, R. R., J. Fluid Mech.13 (1962) 505.

    Google Scholar 

  10. Hartmann, J., Kgl. Danske Videnskab. Selskab, Mat. — fys. Medd.15 (1937) 1.

    Google Scholar 

  11. Irving, J. and N. Mullineux, Mathematics in Physics and Engineering, Academic Press, New York, 1959.

    Google Scholar 

  12. Kapur, J. N. and R. K. Jain, Phys. Fluids3 (1960) 664.

    Google Scholar 

  13. Lehnert, B., Ark. Fys.5 (1952) 69.

    Google Scholar 

  14. Lundgren, T. S., B. H. Atabek and C. C. Chang, Phys. Fluids4 (1961) 1006.

    Google Scholar 

  15. McMahon, J., Annals Math.9 (1894) 23.

    Google Scholar 

  16. Nirenberg, L., Comm. Pure Appl. Math.6 (1953) 167.

    Google Scholar 

  17. Ramamoorthy, P., Phys. Fluids4 (1961) 1444.

    Google Scholar 

  18. Shercliff, J. A., Proc. Camb. Phil. Soc.49 (1953) 136.

    Google Scholar 

  19. Shercliff, J. A., J. Fluid Mech.1 (1956) 644.

    Google Scholar 

  20. Shercliff, J. A., J. Fluid Mech.13 (1962) 513.

    Google Scholar 

  21. Sneddon, I. N., Fourier Transforms. pp. 71–91, 302–7, McGraw-Hill, New York, 1951.

    Google Scholar 

  22. Tao, L. N., J. Aero/Space Sci.27 (1960) 334.

    Google Scholar 

  23. Taylor, G. I., Phil Trans.A 233 (1923) 289.

    Google Scholar 

  24. Watson, J., Theory of Bessel Functions. 2nd ed., Cambridge: University Press, 1944.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moynihan, D.C., Bankoff, S.G. Magnetohydrodynamic circulation of a liquid of finite conductivity in an annulus. Appl. Sci. Res. 12, 165–202 (1965). https://doi.org/10.1007/BF00382119

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382119

Keywords

Navigation