Skip to main content
Log in

Thermal exchange diffusivity in nucleate boiling

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

The phase conversion occurring in nucleate boiling is investigated by referring to the vapor-liquid exchange concept and making use of the boiling enthalpy ratio (liquid excess enthalpy ρL C L ΔT/vapor excess enthalpy ρυ λ). The ratio serves as a criterion to distinguish two fundamentally different kinds of boiling equations: first, thermodynamically oriented correlations which do not account for the exchange effect; and secondly, rate process equations describing the exchange as a function of governing system parameters. Taking advantage of the first possibility allows the correlation of the metastable liquid superheat as a function of reduced thermodynamic coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity

a*:

boiling exchange diffusivity

C L :

liquid heat capacity

c :

constant

E kin :

kinetic energy of liquid

f :

dimensionless temperature difference (T−T s )/(T w −T s )

F :

function of T r , equation (17)

g :

acceleration due to gravity

h :

thickness of supersaturated liquid layer

H :

thickness of thermal boundary layer

J :

integral, equation (5)

k :

liquid thermal conductivity

L :

reference length

M :

boiling exchange number ρL C L ΔT/λ ρυ

\(\left. \begin{gathered} m \hfill \\ n \hfill \\ \end{gathered} \right\}\) :

exponents

Nu L :

Nusselt number qL/ΔTk (containing reference length L)

p :

pressure

\(\bar \Delta\) p :

effective pressure difference

Pr :

Prandtl number

q :

heat flux

r :

radius

R :

bubble radius (R* maximum value, R 0 nucleus radius)

t :

time (t* value at R*)

T :

temperature (T s saturation value, T L bulk liquid temperature, T w wall temperature, T c critical temperature)

T r :

ratio T/T c

ΔT :

\(\bar T\) w −T s

(ΔT)max :

maximum metastable liquid excess temperature

v :

velocity

y :

wall distance

β*:

growth parameter

ε :

degree of metastability, equation (15)

ε vdW :

nominal metastability value evaluated from van der Waals' equation

ζ :

density ratio (ρ L −ρ v )/ρ L

η :

ratio y/H

Θ L :

parameter (T w −T L )/(T w −T s )

λ :

heat of vaporization

ρ L :

saturated liquid density

ρ v :

density of saturated vapor

σ :

surface tension

τ b :

bubble period

p :

peak value

r :

reduced quantity (e.g. T r =T/T c )

References

  1. Forster, K. and R. Greif, Trans. ASME, J. Heat Transfer 81C (1959) 43.

    Google Scholar 

  2. Jakob, M. and W. Fritz, Forschung 2 (1931) 435.

    Google Scholar 

  3. Rinderer, L. and F. Haenssler, Cryogenics 2 (1962) 288.

    Google Scholar 

  4. Forster, K., Phys. Fluids 4 (1961) 448.

    Google Scholar 

  5. Forster, K. and N. Zuber, J. Appl. Phys. 25 (1954) 474.

    Google Scholar 

  6. Scriven, L. E., Chem. Eng. Sci. 10 (1959) 1.

    Google Scholar 

  7. Birkhoff, G., R. S. Margulies and W. A. Horning, Phys. Fluids 1 (1958) 201.

    Google Scholar 

  8. Griffith, P., Trans. ASME 80 (1958) 721.

    Google Scholar 

  9. Savic, P., National Research Council of Canada, Report No. MT-37, 1958; and discussion of Reference 8.

  10. McFadden, P. W. and P. Grassmann, Int. J. Heat Mass Transfer 5 (1952) 169.

    Google Scholar 

  11. Gunther, F. C. and F. Kreith, Progress Report No. 4–120, Jet Prop. Lab., Calif. Inst. Technology, 1950.

  12. Lord Rayleigh, Phil. Mag. 34 (1917) 94.

    Google Scholar 

  13. Bankoff, S. G. and R. D. Mikesell, Chem. Eng. Progr. Sympos. Ser. No. 29, 55 (1959) 95.

    Google Scholar 

  14. Bankoff, S. G., Chem. Eng. Progr. Sympos. Ser. No. 32, 1961, 57, p. 156 & 164.

    Google Scholar 

  15. Richards, R. J., W. G. Steward and R. B. Jacobs, NBS Techn. Note No. 122, 1961.

  16. Merte, H. and J. H. Clark, Adv. Cryogen Eng. 7 (1962) 546.

    Google Scholar 

  17. Frederking, T., Forschung 27 (1961) 17 & 58; Compare also Cryogenic Eng. Conf. Los Angeles 1962, Paper J-1.

  18. Grassmann, P., Phys. Grundlagen d. Chemie-Ing.-Techn. Sauerländer, Aarau, Frankfurt, 1961, p. 353.

    Google Scholar 

  19. Kutateladze, S. S., Isv. Akad. Nauk. SSSR, Otd. Tekh. 4 (1951) 529.

    Google Scholar 

  20. Roubeau, P., Progr. Refrig. Sci. Technol. (Proc. Xth Int. Congr. Regr., Copenhagen, 1959 1 (1960) 49.

    Google Scholar 

  21. Weil, L. and A. Lacaze, 9e Congr. Int. Froid, Comm. I et II, No. 1.13.

  22. Weil, L., IVe Congr. Int. Chauffage Industr. Paris 1952, No. 210.

  23. Bochirol, L., E. Bonjour and L. Weil, Problems Low Temp. Phys. Thermodyn. 2 (1962) 251; (Proc. Int. Inst. Refr., Comm. I, Eindhoven 1960).

    Google Scholar 

  24. Ruzicka, T., Problems Low Temp. Phys. Thermodyn. 1 (1959) 323.

    Google Scholar 

  25. Flynn, T. M., J. W. Draper and J. J. Roos, Adv. Cryog. Eng., 7 (1962) 539.

    Google Scholar 

  26. Mulford, R. N. and J. P. Nigon, Los Alamos Sci. Lab. Rept. LA-1416, 1952.

  27. Class, C. R., J. R. DeHaan, M. Piccione and R. B. Cost, Adv. Cryog. Eng. 5 (1960) 254.

    Google Scholar 

  28. Walters, H. H. Adv. Cryog. Eng. 6 (1961) 509.

    Google Scholar 

  29. Cichelli, M. T. and C. F. Bonilla, Trans. Am. Inst. Chem. Engrs., 41 (1946) 755.

    Google Scholar 

  30. Mesler, R. B. and J. T. Banchero, A.I.Ch.E. 4 (1958) 102.

    Google Scholar 

  31. Corty, C. and A. S. Foust, Chem. Eng. Progr. Sympos. Ser. No. 17, 51 (1955) 1.

    Google Scholar 

  32. Berenson, P. J., Int. J. Heat Mass Transfer 5 (1962) 985.

    Google Scholar 

  33. Van Wijk, W. R. and S. J. D. van Stralen, Physica 28 (1962) 150.

    Google Scholar 

  34. Cole, R., AIChE-J. 6 (1960) 533.

    Google Scholar 

  35. Westwater, J. W., Adv. Chem. Eng., Vol. 1, New York, 1956, p. 1.

  36. Kutateladze, S. S., Heat Transfer in Boiling and Condensation, 1952, AEC-TR-3770.

  37. Nishikawa, K. and K. Yamagata, Int. J. Heat Mass Transfer 1 (1960) 219.

    Google Scholar 

  38. Tien, C. L., Int. J. Heat Mass Transfer 5 (1962) 533.

    Google Scholar 

  39. Chang, Y. P., ASME paper No. 62-HT-37, 1962.

  40. Ellion, M. E., JPL Memo 20–88, Calif. Inst. Techn., 1954.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederking, T.H.K. Thermal exchange diffusivity in nucleate boiling. Appl. sci. Res. 13, 371–388 (1964). https://doi.org/10.1007/BF00382063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382063

Keywords

Navigation