Skip to main content
Log in

Evidence for projections from medullary nuclei onto serotonergic and dopaminergic neurons in the midbrain dorsal raphe nucleus of the rat

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The anterograde tracer Phaseolus vulgaris-leucoagglutinin was injected into the medial nucleus of the solitary tract and into the rostral dorsomedial medulla. A sequential two-color immunoperoxidase staining was accomplished in order to demonstrate the co-distribution of presumed terminal axons with chemically distinct neurons in the dorsal raphe nucleus of the midbrain central gray, i.e., B7 serotonergic and A10dc dopaminergic neurons. Black-stained efferent fibers from the medial nucleus of the solitary tract and the rostral dorsomedial medulla intermingled with brown-stained serotonergic (5-hydroxytryptamine-immunoreactive) or dopaminergic (tyrosine hydroxylase-immunoreactive) neurons. Light microscopy revealed that the black-stained efferent axons exhibited numerous en passant and terminal varicosities that were often found in close apposition to brown-stained serotonergic and dopaminergic somata, and to proximal and distal dendrites and dendritic processes. The close association of immunoreactive elements suggests the presence of axo-somatic and axodendritic synaptic contacts of medullary fibers with serotonergic and dopaminergic neurons in the dorsal raphe nucleus. These projections could be involved in the modulation of dorsal raphe neurons, depending on the autonomic status of an animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrezik JA, Beitz AJ (1985) Reticular formation, central gray and related tegmental nuclei. In: Paxinos G (ed) The rat nervous system, vol 2. Hindbrain and spinal cord. Academic Press, Sydney, pp 1–28

    Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    PubMed  Google Scholar 

  • Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234:734–737

    PubMed  Google Scholar 

  • Bandler R, Törk I (1987) Midbrain periaqueductal gray region in the cat has afferent and efferent connections with solitary tract nuclei. Neurosci Lett 74:1–6

    PubMed  Google Scholar 

  • Baraban JM, Aghajanian GK (1980) Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology 19:355–363

    PubMed  Google Scholar 

  • Baraban JM, Aghajanian GK (1981) Noradrenergic innervation of serotonergic neurons in the dorsal raphe: demonstration by electron microscopic autoradiography. Brain Res 204:1–11

    PubMed  Google Scholar 

  • Beitz AJ (1990a) Central gray. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 307–320

    Google Scholar 

  • Beitz AJ (1990b) Relationship of glutamate and aspartate to the periaqueductal gray-raphe magnus projection: analysis using immunocytochemistry and microdialysis. J Histochem Cytochem 88:1755–1765

    Google Scholar 

  • Beitz AJ, Shepard RD, Wells WE (1983) The periaqueductal grayraphe magnus projection contains somatostatin, neurotensin and serotonin but not cholecystokinin. Brain Res 261:132–137

    PubMed  Google Scholar 

  • Berod A, Hartman BK, Pujol JF (1981) Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J Histochem Cytochem 29:844–850

    PubMed  Google Scholar 

  • Chai CY, Lin RH, Lin AMY, Pan CM, Lee EHY, Kuo JS (1988) Pressor responses from electrical or glutamate stimulations of the dorsal or ventrolateral medulla. Am J Physiol 255:R709-R717

    PubMed  Google Scholar 

  • Cunningham ET, Bohn MC, Sawchenko PE (1990) Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 292:651–667

    PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62 [Suppl 232]:1–55

    Google Scholar 

  • Descarries L, Watkins KC, Garcia S, Beaudet A (1982) The serotonin neurons in nucleus raphe dorsalis of adult-rat: a light and electron microscope radioautographic study. J Comp Neurol 207:239–254

    PubMed  Google Scholar 

  • Descarries L, Berthelet F, Garcia S, Beaudet A (1986) Dopaminergic projections from nucleus raphe dorsalis to neostriatum. J Comp Neurol 249:511–520

    PubMed  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    PubMed  Google Scholar 

  • Fuxe K, Agnati LF, Kalia M, Goldstein M, Andersson K, Härfstrand A (1985) Dopaminergic systems in the brain and pituitary. In: Flücker E, Müller EE, Thorner MO (eds) Basic and clinical aspects of neuroscience. The dopaminergic system. Springer, Berlin Heidelberg New York, pp 11–25

    Google Scholar 

  • Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274:483–515

    PubMed  Google Scholar 

  • Hancock MB (1986) Two-color immunoperoxidase staining: visualization of anatomic relationship between immunoreactive neural elements. Am J Anat 175:343–352

    PubMed  Google Scholar 

  • Herbert H, Saper CB (1992) Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol 315:34–52

    PubMed  Google Scholar 

  • Higgins GA, Hoffman GE, Wray S, Schwaber JS (1984) Distribution of neurotensin-immunoreactivity within baroreceptive portions of the nucleus of the tractus solitarius and the dorsal vagal nucleus of the rat. J Comp Neurol 226:155–164

    PubMed  Google Scholar 

  • Hillegaart V (1991) Functional topography of brain serotonergic pathways in the rat. Acta Physiol Scand 142 [Suppl 598]:1–54

    PubMed  Google Scholar 

  • Housley GD, Martin-Body RL, Dawson NJ, Sinclair JD (1987) Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience 22:237–250

    PubMed  Google Scholar 

  • Hökfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M (1984) Distributional maps of tyrosine hydroxylase-immunore-active neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 277–379

    Google Scholar 

  • Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243:363–380

    PubMed  Google Scholar 

  • Joseph SA, Piekut DT (1986) Dual immunostaining procedure demonstrating neurotransmitter and neuropeptide codistribution in the same brain section. Am J Anat 175:331–342

    PubMed  Google Scholar 

  • Klepper A, Herbert H (1991) Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Brain Res 557:190–201

    PubMed  Google Scholar 

  • Kwiat GC, Basbaum AI (1990) Organization of tyrosine hydroxylase-and serotonin-immunoreactive brainstem neurons with axon collaterals to the periaqueductal gray and the spinal cord in the rat. Brain Res 528:83–94

    PubMed  Google Scholar 

  • Leslie RA, Gwyn DG, Hopkins DA (1982) The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res Bull 8:37–44

    PubMed  Google Scholar 

  • Li YQ, Jia HG, Rao ZR, Shi JW (1990) Serotonin-, substance P- or leucin-enkephalin-containing neurons in the midbrain periaqueductal gray and nucleus raphe dorsalis send projection fibers to the central amygdaloid nucleus in the rat. Neurosci Lett 120:124–127

    PubMed  Google Scholar 

  • Lin AMY, Wang Y, Kuo JS, Chai CY (1989) Homocysteic acid elicits pressor responses from ventrolateral medulla and dorsomedial medulla. Brain Res Bull 22:627–631

    PubMed  Google Scholar 

  • Meredith GE, Wouterlood FG (1990) Hippocampal and midline thalamic fibers and terminals in relation to choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat: a light and electron microscopic study. J Comp Neurol 296:204–221

    PubMed  Google Scholar 

  • Minson J, Llewellyn-Smith I, Neville A, Somogyi P, Chalmers J (1990) Quantitative analysis of spinally projecting adrenaline-synthesising neurons of C1, C2 and C3 groups in rat medulla oblongata. J Auton Nerv Syst 30:209–220

    PubMed  Google Scholar 

  • Moss MS, Glazer EJ, Basbaum AI (1983) The peptidergic organization of the cat periaqueductal gray. I. The distribution of immunoreactive enkephalin-containing neurons and terminals. J Neurosci 3:603–616

    PubMed  Google Scholar 

  • O'Hearn E, Molliver ME (1984) Organization of raphe cortical projections in rat: a quantitative retrograde study. Brain Res Bull 13:709–726

    Article  Google Scholar 

  • Olmos J de, Heimer L (1980) Double and triple labeling of neurons with fluorescent substances: the study of collateral pathways in the ascending raphe system. Neurosci Lett 19:7–12

    Article  Google Scholar 

  • Pieribone VA, Aston-Jones G, Bohn MC (1988) Adrenergic and non-adrenergic neurons in the C1 and C3 areas project to locus coeruleus: a fluorescent double labeling study. Neurosci Lett 85:297–303

    PubMed  Google Scholar 

  • Pieribone VA, Aston-Jones G (1991) Adrenergic innervation of the rat nucleus locus coeruleus arises predominantly from the C1 adrenergic cell group in the rostral medulla. Neuroscience 41:525–542

    PubMed  Google Scholar 

  • Pohle W, Ott T, Müller-Welde P (1984) Identification of neurons of origin providing the dopaminergic innervation of the hippocampus. J Hirnforsch 25:1–10

    PubMed  Google Scholar 

  • Reichling DB, Basbaum AI (1990) Contribution of brainstem GA-BAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. J Comp Neurol 302:370–377

    PubMed  Google Scholar 

  • Rogers RC, Hermann GH (1983) Central connections of the hepatic branch of the vagus nerve: a horseradish peroxidase histochemical study. J Auton Nerv Syst 7:165–174

    PubMed  Google Scholar 

  • Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM, Reis DJ (1984) Tonic vasomotor control by the rostral ventrolateral medulla: effects of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4:474–494

    PubMed  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central organization of the vagus nerve innervating the stomach of the rat. J Comp Neurol 238:473–488

    PubMed  Google Scholar 

  • Shipley MT, McLean JH, Behbehani MM (1987) Heterogeneous distribution of neurotensin-like immunoreactive neurons and fibers in the midbrain periaqueductal gray of the rat. J Neurosci 7:2025–2034

    PubMed  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat. Cell bodies and terminals. Neuroscience 6:557–618

    PubMed  Google Scholar 

  • Steinbusch HWM (1984) Seotonin-immunoreactive neurons and their projections in the CNS. In: Björklund A, Hökfelt T, Kuhar MJ (eds) Handbook of chemical neuroanatomy, vol 3. Classical transmitters and transmitter receptors in the CNS, part II. Elsevier, Amsterdam, pp 68–125

    Google Scholar 

  • Stratford TR, Wirtshafter D (1990) Ascending dopaminergic projections from the dorsal raphe nucleus in the rat. Brain Res 511:173–176

    PubMed  Google Scholar 

  • Sumal KK, Blessing WW, Joh TH, Reis DJ, Pickel VM (1983) Synaptic interaction of vagal afferents and catecholaminergic neurons in the rat nucleus tractus solitarius. Brain Res 277:31–40

    Article  PubMed  Google Scholar 

  • Törk I (1985) Raphe nuclei and serotonin containing systems. In: Paxincs G (ed) The rat nervous system, vol 2. Hindbrain and spinal cord. Academic Press, Sydney, pp 43–78

    Google Scholar 

  • Vandermaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological caracterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289:109–119

    Article  PubMed  Google Scholar 

  • Vertes RP (1990) Fundamentals of brainstem anatomy: a behavioral perspective. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 33–103

    Google Scholar 

  • Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313:643–668

    PubMed  Google Scholar 

  • Villar MJ, Vitale ML, Parisi MN (1987) Dorsal raphe serotonergic projection to the retina. A combined peroxidase tracing-neurochemical/high performance liquid chromatography study in the rat. Neuroscience 22:681–686

    PubMed  Google Scholar 

  • Villar MJ, Vitale ML, Hökfelt T, Verhofstad AAJ (1988) Dorsal raphe serotonergic branching neurons projecting both to the lateral geniculate body and superior colliculus: a combined retrograde tracing-immunohistochemical study in the rat. J Comp Neurol 277:126–140

    PubMed  Google Scholar 

  • Woulfe JM, Flumerfelt BA, Hrycyshyn AW (1990) Efferent connections of the A1 noradrenergic cell group: a DBH immunohistochemical and PHA-L anterograde tracing study. Exp Neurol 109:308–322

    PubMed  Google Scholar 

  • Wouterlood FG (1988) Anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoagglutinin combined with immunocytochemistry of gamma-amino butyric acid, choline acetyltransferase or serotonin. Histochemistry 89:421–428

    PubMed  Google Scholar 

  • Wouterlood FG, Groenewegen HJ (1985) Neuroanatomical tracing by use of Phaseolus vulgaris-leucoagglutinin (PHA-L): electron microscopy of PHA-L filled neuronal somata, dendrites, axons and axon terminals. Brain Res 326:188–191

    PubMed  Google Scholar 

  • Yoshida M, Shirouzu M, Tanaka M, Semba K, Fibinger HC (1989) Dopaminergic neurons in the nucleus raphe dorsalis innervate the prefrontal cortex in the rat: a combined retrograde tracing and immunohistochemical study using anti-dopamine serum. Brain Res 496:373–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbert, H. Evidence for projections from medullary nuclei onto serotonergic and dopaminergic neurons in the midbrain dorsal raphe nucleus of the rat. Cell Tissue Res. 270, 149–156 (1992). https://doi.org/10.1007/BF00381889

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00381889

Key words

Navigation