Skip to main content
Log in

Changes in the excretory patterns of the fresh-water field crab Paratelphusa hydrodromous upon adaptation to higher salinities

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Changes in the exeretory patterns of the fresh-water field crab Paratelphusa hydrodromous were studied in relation to salinity adaptation. Fifty percent sea-water medium was found to be the threshold of a change from ammonotelism to ureotelism in the crabs. Adaptation for 11 days in the 100% (=34‰ S) sea water brought about this change. Sea-water-adapted crabs excreted more urea, uric acid, and trimethylamine than controls, irrespective of starvation. Starvation reduced the quantitative excretion. Blood aspartic and glutamic acid levels increased on adaptation to sea water, in contrast to the levels of asparagine and glutamine. The activities of asparaginase and glutaminase in the tissues decreased on salinity adaptation. The reduction in amidase activity in 100% sea-water-adapted crabs is discussed with reference to acid-base homeostasis in the crabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Baldwin, E.: An introduction to comparative biochemistry, 4th ed. 179 pp. New York: Cambridge University Press 1964.

    Google Scholar 

  • Balinsky, J. B., M. M. Cragg and E. Baldwin: The adaptation of amphibian waste nitrogen excretion to dehydration. Comp. Biochem. Physiol. 3, 236–244 (1961).

    Google Scholar 

  • Benoit, G. J. and L. H. Norris: Origin of trimethylamine oxide in salmon. J. biol. Chem. 158, 439–442 (1945).

    Google Scholar 

  • Bliss, D. E., and L. H. Mantel: Adaptations of erustaceans to land. A summary and analysis of new findings. Am. Zool. 8, 673–685 (1968).

    Google Scholar 

  • Bricteux-Gregoire, S., Gh. Duchateau-Bosson, Ch. Jeuniaux et M. Florkin: Constituants osmotiquement actifs des muscles de crabe chinois Eriocheir sinensis, adapte a 1. eau douce on à l'eau de mer. Archs int. Physiol. Biochim. 70, 273–286 (1962).

    Google Scholar 

  • Brodsky, W. A., N. J. Carlisky, C. F. Gonzalez and Y. E. Shamoo: Metabolic pathways for urea production by the amphibian kidney. Am. J. Physiol. 208, 546–554 (1965).

    Google Scholar 

  • Fine, A., J. Scott and E. Bourke: Studies on the glutamine aminotransferase — ω-amidase pathway in the human kidney in vitro. J. Lab. clin. Med. 80, 591–597 (1972).

    Google Scholar 

  • Flemister, S. C.: Histophysiology of gill and kidney of the crab, Ocypode albicans. Biol. Bull. mar. biol. Lab., Woods Hole 116, 37–48 (1959).

    Google Scholar 

  • Florkin, M., Gh. Duchateau-Bosson, Ch. Jeuniaux et E. Schoffeniels: Sur le mechanisme de la regulation de la concentration intracellulaire en acides amines libres, chez Eriocheir sinensis, au cours de l'adaptation osmotique. Archs int. Physiol. Biochim. 72, 892–906 (1964).

    Google Scholar 

  • — and E. Schoffeniels: Euryhalinity and the concept of physiological radiation. In: Studies in comparative biochemistry, pp 6–40. Ed. by K. A. Munday. Oxford: Pergamon Press 1965.

    Google Scholar 

  • Folin, O. and A. Svedberg: Micro-methods for the determination of non-protein nitrogen, urea, uric acid and sugar in unlaked blood. J. biol. Chem. 88, 85–96 (1930).

    Google Scholar 

  • Goldstein, L. and R. P. Forster: The role of uricolysis in the production of urea by fishes and other aquatic vertebrates. Comp. Biochem. Physiol. 14, 567–576 (1965).

    Google Scholar 

  • Gordon, M. S. and V. A. Tucker: Further observations on the physiology of salinity adaptation in the crab-eating frog (Rana cancrivora). J. exp. Biol. 49, 185–193 (1968).

    Google Scholar 

  • Hartenstein, R.: Nitrogen metabolism in the terrestrial isopod, Oniscus asellus. Am. Zool. 8, 507–519 (1968).

    Google Scholar 

  • Janssens, P. A.: Urea production and transaminase activity in Xenopus laevis Daudin. Comp. Biochem. Physiol. 13, 217–224 (1964).

    Google Scholar 

  • Krebs, H. A.: Metabolims of amino-acids. IV. The synthesis of glutamine from glutamic acid and ammonia and the enzymic hydrolysis of glutamine on animal tissues. Biochem. J. 29, 1951–1969 (1935).

    Google Scholar 

  • Krishnamoorthy, R. V. and V. Virabhadrachari: Carbonic anhydrase activity in the gills of Etroplus maculatus (Teleostei) as a function of salinity acclimation. Proc. Indian Acad. Sci. (Sect. B) 69, 235–240 (1969).

    Google Scholar 

  • Krogh, A.: Osmotic regulation in aquatic animals, 242 pp. London: Cambridge University Press 1939.

    Google Scholar 

  • Layne, E.: Spectrophotometric and turbidometric method for measuring protein. In: Methods in enzymology, Vol. III. pp 447–454. Ed. by S. P. Colowick and N. O. Kaplan. New York: Academic Press 1957.

    Google Scholar 

  • Lyman, J. and R. H. Fleming: Composition of sea water. J. mar. Res. 3, 134–146 (1940).

    Google Scholar 

  • Maetz, J. and G. Romeu: The mechanism of sodium and chloride uptake by the gills of a freshwater fish Carassius auratus. II. Evidence for NH4+/Na+ and HCO3−/Cl exchanges. J. gen. Physiol. 47, 1209–1227 (1964).

    Google Scholar 

  • Mahler, H. R. and E. H. Cordes: Biological chemistry, 872 pp. New York: Harper & Row 1966.

    Google Scholar 

  • Maren, T. H.: Carbonic anhydrase: chemistry, physiology and inhibition. Physiol. Rev. 47, 595–781 (1967).

    Google Scholar 

  • Meister, A.: Glutaminase, asparaginase and α-keto acid-ω-amidase (omega-amidases). In: Methods in enzymology, Vol. II. pp 380–385. Ed. by S. P. Colowick and N. O. Kaplan. New York: Academic Press 1955.

    Google Scholar 

  • Needham, J.: Contributions of chemical physiology to the problem of reversibility in evolution. Biol. Rev. 13, 225–251 (1938).

    Google Scholar 

  • Norris, E. R. and G. J. Benoit: Trimethylamine oxide in marine animals. J. biol. Chem. 158, 433–438 (1945).

    Google Scholar 

  • Oser, B. L. (Ed.): Hawk's physiological chemistry, 14th ed. 1472 pp. New York: McGraw-Hill Book Co. 1965.

    Google Scholar 

  • Owen, E. E. and R. R. Robinson: Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J. clin. Invest. 42, 263–276 (1963).

    Google Scholar 

  • Pitts, P. I.: The renal production and excretion of ammonia. Am. J. Med. 36, 720–742 (1964).

    Google Scholar 

  • Prosser, C. L. and F. A. Brown, Jr.: Comparative animal physiology, 2nd ed. 688 pp. Philadelphia: W. B. Saunders 1961.

    Google Scholar 

  • Reddy, V. V. and P. R. A. Babu: Oxygen consumption in response to chloride uptake in the freshwater field crab Paratelphusa hydrodromous. Life Sciences (I. Physiol. Pharmacol.) 8, 739–743 (1969).

    Google Scholar 

  • Riegel, J. A.: Excretion-Arthropoda. In: Chemical zoology, Vol. VI. pp 249–278. Ed. by M. Florkin and B. T. Scheer. New York: Academic Press 1971.

    Google Scholar 

  • Romeu, G. and J. Maetz: The mechanism of sodium chloride uptake by the gills of a freshwater fish, Carassius auratus. I. Evidence for an independent uptake of sodium and chloride ions. J. gen. Physiol. 47, 1195–1207 (1964).

    Google Scholar 

  • Schmidt-Nielson, K. and P. Lee: Kidney function on the crab-eating frog (Rana cancrivora). J. exp. Biol. 39, 167–177 (1962).

    Google Scholar 

  • Schoffeniels, E. and R. Gilles: Nitrogenous constituents and nitrogen metabolism in arthropods. In: Chemical zoology, Vol. V. pp 199–277. Ed. by M. Florkin and B. T. Scheer. New York: Academic Press 1970a.

    Google Scholar 

  • —: Osmoregulation in aquatic arthropods. In: Chemical zoology, Vol. V. pp 255–286. Ed. by M. Florkin and B. T. Scheer. New York: Academic Press 1970b.

    Google Scholar 

  • Shalhoub, R., W. Webber and S. Glabman: Extraction of a-acids from and their addition to renal blood plasma. Am. J. Physiol. 204, 181–186 (1963).

    Google Scholar 

  • Sharma, M. L.: Studies on the changes in the pattern of nitrogenous excretion of Orconectis rusticus under osmotic stress. Comp. Biochem. Physiol. 19, 681–690 (1966).

    Google Scholar 

  • —: Studies on the sources and mechanism of increased urea production by Orconectis rusticus under osmotic stress. Comp. Biochem. Physiol. 24, 55–60 (1968).

    Google Scholar 

  • —: Trigger mechanism of increased urea production by the cray fish Orconectis rusticus under osmotic stress. Comp. Biochem. Physiol. 30, 309–321 (1969).

    Google Scholar 

  • Shewan, J. M., D. M. Gibson and C. K. F. A. P. Murray: Technical conference on fish inspection and quality control. Halifax, Nova Scotia, Canada: Fisheries Research Board of Canada (Paper F.E.FIC/69/R/16) 1969.

    Google Scholar 

  • Smith, H. W.: Metabolism of lungfish, Protopterus aethiopicus. J. biol. Chem. 88, 97–130 (1930).

    Google Scholar 

  • —: Froth fish to philosopher, 265 pp. Boston: Little 1953.

    Google Scholar 

  • Wieser, W. and G. Schweizer: A re-examination of the excretion of nitrogen by terrestrial isopods. J. exp. Biol. 52, 267–277 (1970).

    Google Scholar 

  • Wrong, O. and H. E. F. Davies: The excretion of acid in renal disease. Q. Jl Med. 28, 259–313 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. K. Panikkar, Panaji

Dedicated to the memory of the late Professor K. Pampapathi Rao, who died on 23 June, 1973.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, R.V., Srihari, K. Changes in the excretory patterns of the fresh-water field crab Paratelphusa hydrodromous upon adaptation to higher salinities. Mar. Biol. 21, 341–348 (1973). https://doi.org/10.1007/BF00381091

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00381091

Keywords

Navigation