Skip to main content
Log in

Psychophysical assessment of sinusoidal whole-body vibration in z-axis between 0.6 and 5 Hz combined with different noise levels

  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Summary

Nine healthy sitting males evaluated the intensity of vertical whole-body vibration (WBV) in z-axis at four frequencies (F1 = 0.63 Hz, F2 = 1.25 Hz, F3 = 2.5 Hz, F4 = 5 Hz) and two intensities (11 = 1 ms−2 rms, 12 = 2 ms−2 rms) by cross-modality matching (CMM). The subjects were simultaneously exposed to low-frequency noise at two levels (L1 = 65 dBA, L2 = 86 dBA). L1 and L2 were context conditions which did not have to be evaluated by CMM. The results indicate a flat response between F2 and F3; the sensitivity increases towards F1. Different exponents of Stevens' power law for the frequencies of WBV contradict the frequency range tested to be a sensory continuum. L2 caused practically significantly stronger sensations of the WBV-intensity from F1 to F3 (I1) and at F2 (I2). No synergistic effect of noise and WBV was shown at F3I2. Weighting factors were calculated for all exposure conditions using Stevens' power law. The weighting of F2 and F3 contradicts that of the International Standard ISO 2631-1985 (E). The results enable recommendations for the frequency weighting of WBV between 0.63 and 1 Hz, as well as for the equivalence of noise and WBV with combined exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson NH (1975) On the role of context effects in psychophysical judgement. Psychol Rev 82:462–482

    Google Scholar 

  • Anderson NH (1976) Integration theory, functional measurement and the psychophysical law. In: Geisler H-G, Zabrodin YuM (eds) Advances in psychophysics. VEB Deutscher Verlag der Wissenschaften, Berlin, pp 93–130

    Google Scholar 

  • Bastek R, Buchholz Ch, Denisov EI, Enderlein G, Kramer H, Malinskaja NN, Meister A, Metz A-M, Mucke R, Rhein A, Rothe R, Seidel H, Sroka Ch (1977) Comparison of the effects of sinusoidal and stochastic octave-band-wide vibrations — a multi-disciplinary study. Part III: Psychological investigations. Int Arch Occup Environ Health 39:165–179

    Google Scholar 

  • Draft for Development (1973) Guide to the safety aspects of human vibration experiments. DD 23. Gr 7, British Standards Institution, London

  • Dupuis H (1969) Zur physiologischen Beanspruchung des Menschen durch mechanische Schwingungen. Fortschrittberichte, VDI-Z Reihe 11 Nr. 7, VDI-Verlag, Düsseldorf, pp 1–142

    Google Scholar 

  • Dupuis H, Hartung E, Louda L (1972) Vergleich regelloser Schwingungen eines begrenzten Frequenzbereiches mit sinusförmigen Schwingungen hinsichtlich der Einwirkung auf den Menschen. Ergonomics 15:237–267

    Google Scholar 

  • Dupuis H, Zerlett G (1986) The effects of whole-body vibration. Springer, Berlin Heidelberg New York Tokyo Hongkong

    Google Scholar 

  • Griffin MJ (1986) Evaluation of vibration with respect to human response. SAE Technical Paper Series 860047, P-174. Passenger comfort, convenience and safety: test tools and procedures. Int Congress and Exposition Detroit, Michigan, February 24–28, 1986, pp 11–34

  • Hinz B, Seidel H (1987) The nonlinearity of the human body's dynamic response during sinusoidal whole body vibration. Ind Health 25:169–181

    Google Scholar 

  • ISO 2631-1985 (E) Guide for the evaluation of human exposure to whole-body vibration (1985). International Standards Organization

  • Jones AJ, Saunders DJ (1974) A scale of human reaction to whole body vertical, sinusoidal vibration. J Sound Vibration 35:503–520

    Google Scholar 

  • Kjellberg A, Wikstroem B-O, Dimberg U (1985) Whole-body vibration: exposure time and acute effects — experimental assessment of discomfort. Ergonomics 28:545–554

    Google Scholar 

  • Landström U, Lundström R (1986) Sensations, perception thresholds and temporary threshold shifts of whole body vibrations in sitting and standing posture. J Low Frequency Noise Vibr 5:68–77

    Google Scholar 

  • Leatherwood JD (1979) Human discomfort response to noise combined with vertical vibration. NASA TP-1374, 46 pp

  • Leatherwood JD, Dempsey TK, Clevenson SA (1980) A design tool for estimating passenger ride discomfort within complex ride environments. Hum Factors 22:291–312

    Google Scholar 

  • Manninen O (1985) Hearing threshold and heart rate in men after repeated exposure to dynamic muscle work, sinusoidal vs stochastic whole body vibration and stable broadband noise. Int Arch Occup Environ Health 54:19–32

    Google Scholar 

  • Manninen O, Ekblom A (1984) Single and joint actions of noise and sinusoidal whole body vibration on TTS2 values and low frequency upright posture sway in men. Int Arch Occup Environ Health 54:1–17

    Google Scholar 

  • McKay JR (1972) A study of the startle effects of short duration vibration. ISVR Memorandum 460. Institute of Sound and Vibration Research, Southampton

    Google Scholar 

  • McCullogh ML, Clarke MJ (1974) Human response to wholebody vibration: an evaluation of current trends. Hum Fact 16:78–86

    Google Scholar 

  • Meister A, Bräuer D, Kurerov NN, Metz A-M, Mucke R, Rothe R, Seidel H, Starozuk IA, Suvorov GA (1984) Evaluation of responses to broad-band whole-body vibration. Ergonomics 27:959–980

    Google Scholar 

  • Oborne DJ (1976) A critical assessment of studies relating whole-body vibration to passenger comfort. Ergonomics 19:751–774

    Google Scholar 

  • Oborne DJ, Clarke MJ (1974) The determination of equal comfort zones for whole-body vibration. Ergonomics 17:769–782

    Google Scholar 

  • Pepermans RG, Corlett EN (1983) Cross-modality matching as a subjective assessment technique. Appl Ergonomics 14:169–176

    Google Scholar 

  • Richter J, Meister A, Bluethner R, Seidel H (1988) Subjective evaluation of isolated and combined exposure to wholebody vibration and noise by means of cross-modality matching. Activ Nerv Sup 30:47–51

    Google Scholar 

  • Seidel H (1975) Systematische Darstellung physiologischer Reaktionen auf Ganzkörperschwingungen in vertikaler Richtung (Z-Achse) zur Ermittlung von biologischen Bewertungsparametern. Ergonomische Berichte, Schriftenreihe für Arbeitsstudium, Arbeitsgestaltung, Arbeitsschutz und Arbeitshygiene im Bauwesen 15:18–39

    Google Scholar 

  • Seidel H (1988) Myoelectric reactions to ultra-low and low-frequency whole-body vibration. Eur J Appl Physiol 57:558–562

    Google Scholar 

  • Seidel H, Meister A, Metz AM, Rothe R, Ullsperger P, Bluethner R, Braeuer D, Menzel G, Sroka Ch (1984) Effects of exposure to whole-body vibration and noise on the TTS, performance, postural sway, and auditory evoked brain potentials. Proc 1st Int Conf Combined Effects of Environmental Factors. Tampere Finland, pp 217–232

  • Shoenberger RW, Harris C (1971) Psychophysical assessment of whole-body vibration. Hum Factors 13:41–50

    Google Scholar 

  • Simic D (1970) Beitrag zur Optimierung der Schwingungseigenschaften des Fahrzeuges — Physiologische Grundlagen des Schwingungskomforts, Dissertation. Technische Universität, Berlin

    Google Scholar 

  • Stevens SS (1986) Psychophysics — introduction to its perceptual, neural and social prospects. Stevens G (ed) Transaction Books, New Brunswick Oxford

    Google Scholar 

  • Sydow H, Petzold P (1981) Mathematische Psychologie. Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Teghtsoonian M, Teghtsoonian R (1983) Consistency of individual exponents in cross-modal matching. Perception Psychophysics 33:203–214

    Google Scholar 

  • Ullsperger P, Seidel H, Menzel G (1986) Effect of whole-body vibration with different frequencies and intensities on auditory evoked potentials and heart rate in man. Eur J Appl Physiol 54:661–668

    Google Scholar 

  • Yonekawa Y, Miwa T (1972) Sensational responses of sinusoidal whole-body vibration with ultra-low frequencies. Ind Health 10:63–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was done in the Temporary International Research Team on combined Effects of Noise and Vibration of the Council of Mutual Economic Assistance of the Socialist Countries

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidel, H., Richter, J., Kurerov, N.N. et al. Psychophysical assessment of sinusoidal whole-body vibration in z-axis between 0.6 and 5 Hz combined with different noise levels. Int Arch Occup Environ Heath 61, 413–422 (1989). https://doi.org/10.1007/BF00381034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00381034

Key words

Navigation