Skip to main content
Log in

Long latency muscle responses in cerebellar diseases

  • Published:
European archives of psychiatry and neurological sciences Aims and scope Submit manuscript

Summary

Long latency reflexes were measured from the hand muscles of 27 patients suffering from different cerebellar diseases (12 diffuse cerebellar atrophies, 7 cerebellar hemispheric infarcts, 8 Friedreich's disease) and from 45 controls after electrical stimulus of the median nerve at the wrist. The M3 response (latency about 70 ms) was increased in about 50% of cerebellar atrophy cases and occasionally (10 of 12 cases) separated from the M2 response (50 ms). M3 was sometimes (3/7) increased and the M2-3 complex was prolonged ipsilaterally in cases of cerebellar infarcts. In the cases of Friedreich's ataxia M2 was always lost uni or bilaterally because of the disturbance of afferent or efferent fibres. The latencies of the spinal reflex M1 and also of M2 were not always increased strongly enough to be clearly separated from the normal values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel WR (1982) Shortening reaction in patients with cerebellar ataxia. Ann Neurol 11:272–278

    Google Scholar 

  • Barbeau A (1976) Friedreich's ataxia — an overview. J Can Sci Neurol 13:389–397

    Google Scholar 

  • Bouchard JP, Barbeau A, Bouchard R, Bouchard RW (1979) Electromyography and nerve conduction studies in Friedreich's ataxia and autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). J Can Sci Neurol 6:185–189

    Google Scholar 

  • Brooks VJ (1984) The cerebellum and adaptive turning of movements. In: Creutzfeldt O, Schmidt LRF, Willis WD (eds) Sensory-motor integration in the nervous system. Exp Brain Res (Suppl. 9) 170–183

  • Caruso G, Santoro L, Perretti A, Serlenga L, Crisci C, Ragno M, Barbieri F, Filla A (1983) Friedreich's ataxia: electrophysiological and histological findings. Acta Neurol Scand 67:26–40

    Google Scholar 

  • Claus D (1986) Long loop-Reflexe — eine klinisch relevante Methode. Fortschr Neurol Psychiatr 54:35–41

    Google Scholar 

  • Claus D, Aschoff JC (1980) Computer-Tomographie bei Atrophien im Bereich der hinteren Schädelgrube. Arch Psychiatr Nervenkr 229:179–187

    Google Scholar 

  • Claus D, Aschoff JC (1981) Cranial computerized tomography in spinocerebellar atrophies. Ann New York Acid Sci 374:831–838

    Google Scholar 

  • Claus D, Aschoff JC (1982) Computertomographische Differentialdiganose infratentorieller Atrophien. Arch Psychiatr Nervenkr 231:289–303

    Google Scholar 

  • Claus D, Lang C, Kotzian J (1985) Zur Beziehung zwischen Long-loop-Reflexbefund und Topographie von Hirninfarkten. Z EEG-EMG 16:191–195

    Google Scholar 

  • Conrad B (1978) The motor cortex as a primary device for fast adjustment of programmed motor patterns to afferent signals. In: Desmedt JE (ed) Cerebral motor control in man: Long loop mechanisms. Progress in clinical neurophysiology, vol 4. S. Karger Basel, pp 123–140

    Google Scholar 

  • Conrad B, Aschoff JC (1977) Effects of voluntary isometric and isotonic activity on late transcortical reflex components in normal subjects and hemiparetic patients. Electroencephalogr Clin Neurophsiol 42:107–116

    Google Scholar 

  • Darton K, Lippold OCJ, Shahani M, Shahani U (1985) Long-latency spinal reflexes in humans. J Neurophysiol 53:1604–1618

    Google Scholar 

  • Dichgans J, Diener HC (1984) Clinical evidence for functional compartmentalization of the cerebellum. In: Bloedel JR, Dichgans J, Precht W (eds) Cerebellar functions. Springer, Berlin Heidelberg New York, pp 126–147

    Google Scholar 

  • Dichgans J, Diener HC, Müller A (1985) Characteristics of increased postural sway and abnormal long loop responses in patients with cerebellar diseases and parkinsonism. In: Struppler A, Weindl A (eds) Advances in applied neurological science. Electromyography and evoked potentials. Springer, Berlin Heidelberg New York, pp 68–74

    Google Scholar 

  • Diener HC, Dichgans J, Bacher M, Guschlbauer (1984a) Improvement of ataxia in alcoholic cerebellar atrophy through alcohol abstinence. J Neurol 231:258–262

    Google Scholar 

  • Diener HC, Dichgans J, Bacher M, Guschlbauer B (1984b) Characteristic alterations of long-loop “reflexes” in patients with Friedreich's disease and late atrophy of the cerebellar anterior lobe. J Neurol Neurosurg Psychiatry 47:679–685

    Google Scholar 

  • Dunn HC (1973) Nerve conduction studies in children with Friedreich's ataxia and ataxia teleangiectasia. Dev Med Child Neurol 15:324–337

    Google Scholar 

  • Dyck PJ, Lambert EH (1968) Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. II. Neurologic, genetic and electrophysiologic findings in various neuronal degenerations. Arch Neurol (Chicago) 18:619–625

    Google Scholar 

  • Eccles JC (1982) The future of Studies on the Cerebellum. In: Palay SL, Chan-Palay V (eds) The cerebellum — new vistas. Springer, Berlin Heidelberg New York, pp 607–620

    Google Scholar 

  • Eccles JC (1977) Cerebellar function in the control of movement. In: Rose F (ed) Physiological aspects of clinical neurology. Backwell Oxford, pp 157–178

    Google Scholar 

  • Eisen A, Hoirch M, Fink M, Goya T, Calne D (1985) Noninvasive measurement of central sensory and motor conduction. Neurology 35:503–509

    Google Scholar 

  • Evarts EV, Vaughn WJ (1978) Intended arm movements in response to externally produced arm displacements in man. In: Desmedt JE (ed) Cerebral motor control in man: long loop meachanisms. Progress in clinical Neurophysiology, vol 4, S Karger, Basel, pp 178–192

    Google Scholar 

  • Fiaschi A, Ferrari G, De Grandis D, Tomelleri G (1978) Involvement of the peripheral nervous system in spino-cerebellar ataxia. Acta Neurol (Napoli) 33:22–30

    Google Scholar 

  • Friedreich N (1863a) Ueber degenerative Atrophie der spinalen Hinterstränge. Virchows Arch [Pathol Anat] 26:433–459

    Google Scholar 

  • Friedreich N (1863b) Ueber degenerative Atrophie der spinalen Hinterstränge. Virchows Arch [Pathol Anat] 27:1–26

    Google Scholar 

  • Friedreich N (1877) Ueber Ataxie mit besonderer Berücksichtigung der hereditären Formen. Virchows Arch [Pathol Anat] 70:140–152

    Google Scholar 

  • Geoffroy G, Barbeau A, Breton A, Lemieux B, Aube M, Leger C, Bouchard JB (1976) Clinical description and roentgenologic evaluation of patients with Friedreich's ataxia. J Can Sci Neurol 3:279–286

    Google Scholar 

  • Greenfield JG (1954) The spino-cerebellar degenerations. Blackwell Scientific Publ. Oxford, pp 21–34

    Google Scholar 

  • Harding AE (1985) The hereditary ataxias and related disorders. Clinical neurology and neurosurgery monographs, vol 6. Churchill Livingstone, London

    Google Scholar 

  • Harding AE, Thomas PK (1980) Autosomal recessive forms of hereditary motor and sensory polyneuropathy. J Neurol Neurosurg Psychiatry 43:669–678

    Google Scholar 

  • Hore J, Vilis T (1984) A cerebellar-dependent efference copy mechanism for generating appropriate muscle responses to limb perturbations. In: Bloedel RJ, Dichgans J, Precht W (eds) Cerebellar functions. Springer, Berlin Heidelberg New York, pp 24–35

    Google Scholar 

  • Hughes JT, Brownell B, Hewer RL (1968) The peripheral sensory pathway in Friedreich's ataxia. Brain 91:803–818

    Google Scholar 

  • Jones SJ, Baraitser M, Halliday AM (1980) Peripheral and central somatosensory nerve conduction defects in Friedreich's ataxia. J Neurol Neurosurg Psychiatry 43:495–503

    Google Scholar 

  • Lee RG, Tatton WG (1975) Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders. J Can Sci Neurol 2:285–293

    Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1976) Servo action in the human thumb. J Physiol 257:1–44

    Google Scholar 

  • Marsden CD, Merton PA, Morton HB, Adam J (1978) The effect of lesions of the central nervous system on long-latency stretch reflexes in the human thumb. In: Desmedt JE (ed) Cerebral motor control in man: Long loop mechanisms. Progress in clinical neurophysiology, vol 4. S. Karger, Basel, pp 334–341

    Google Scholar 

  • Marsden CD, Rothwell JC, Day BL (1984) The stretch reflex: Human spinal and long loop reflexes (chap 4). In: Shahani BT (ed) Electromyography in CNS disorders: Central EMG. Butterworth, Boston Londen, pp 45–75

    Google Scholar 

  • McLeod JG (1971) An electrophysiological and pathological study of peripheral nerves in Friedreich's ataxia. J Neurol Sci 12:333–349

    Google Scholar 

  • Meyer-Lehmann J, Conrad B, Matsunami K, Brooks VB (1975) Effects of dentate cooling on precentral unit activity following torque pulse injections into elbow movements. Brain Res 94:237–251

    Google Scholar 

  • Miller AD, Brooks VB (1981) Late muscular responses to arm perturbations persist during supraspinal dysfunctions in monkeys. Exp Brain Res 41:146–158

    Google Scholar 

  • Milner-Brown HS, Stein RB, Lee RG (1975) Synchronization of human motor units: possible roles of exercise and supraspinal reflexes. Electroencephalogr Clin Neurophysiol 38:245–254

    Google Scholar 

  • Nashner LM, Grimm RJ (1978) Analysis of multiloop dyscontrols in standing cerebellar patients. In: Desmedt JE (ed) Cerebral motor control in man: Long loop mechanisms. Progress in clinical neurophysiology, vol 4. S. Karger, Basel, pp 300–319

    Google Scholar 

  • Neundörfer B, Claus D (1985) Alkoholbedingte Polyneuropathie. In: Lehmann H-J (ed) Polyneuropathie. Enke Verlag, Stuttgart, pp 72–79

    Google Scholar 

  • Noth J, Matthews HR, Friedemann HH (1984) Long latency reflex force of human finger muscles in response to imposed sinusoidal movements. Exp Brain Res 55:317–324

    Google Scholar 

  • Nuwer MR, Perlman SL, Packwood JW, Kark RAP (1983) Evoked potential abnormalities in the various inherited ataxias. Ann Neurol 13:20–27

    Google Scholar 

  • Oh SJ, Halsey JH (1973) Abnormality in nerve potentials in Friedreich's ataxia. Neurology (Minneapolis) 23:52–54

    Google Scholar 

  • Ouvrier RA, McLeod JG, Conchin TE (1982) Friedreich's ataxia. Early detection and progression of peripheral nerve abnormalities. J Neurol Sci 55:137–145

    Google Scholar 

  • Pelosi L, Fels A, Petrillo A, Senatore R, Russo G, Lönegren K, Calace P, Caruso G (1984) Friedreich's ataxia: clinical involvement and evoked potentials. Acta Neurol Scand 70:360–368

    Google Scholar 

  • Peyronnard JM, Bouchard JP, Lapointe L, Lamontagne A, Lemieux B, Barbeau A (1976) Nerve conduction studies and electromyography in Friedreich's ataxia. J Can Neurol Sci 3:313–317

    Google Scholar 

  • Salisachs P, Codina M, Pradas J (1975) Motor Conduction Velocity in Patients with Friedreich's ataxia. Report of 12 cases. J Neurol Sci 24:331–337

    Google Scholar 

  • Sauer M (1980) Somatosensible Leitungsmessungen bei neurologischen Systemerkrankungen. Neurale Muskelatrophien und spinocerebelläre Ataxien. Arch Psychiatr Nervenkr 228:223–242

    Google Scholar 

  • Sasaki K (1984) Cerebro-cerebellar interactions and organization of a fast and stable hand movements: cerebellar participation in voluntary movement and motor learning. In: Bloedel RJ, Dichgans J, Precht W (eds) Cerebellar functions. Springer, Berlin Heidelberg New York, pp 70–85

    Google Scholar 

  • Strick PL (1978) Cerebellar involvement in “volitional” muscle responses to load changes. In: Desmedt JE (ed) Cerebral motor control in man: Long loop mechanisms. Progress in clinical neurophysiology, vol 4. S Karger, Basel, pp 85–93

    Google Scholar 

  • Tatton WG, Lee RG (1975) Evidence for abnormal long-loop reflexes in rigid parkinsonian patients. Brain Res 100:671–676

    Google Scholar 

  • Thach WT (1978) Single Unit studies of long loops involving the motor cortex and cerebellum during limb movements in monkeys. In: Desmedt JE (ed) Cerebral motor control in man: Long loop mechanisms. Progress in clinical neurophysiology, vol 4. S Karger, Basel, pp 94–106

    Google Scholar 

  • Tyrer JH (1975) Friedreich's ataxia. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 5. North Holland Publ., Amsterdam Oxford, pp 319–364

    Google Scholar 

  • Wiesendanger M, Miles TS (1982) Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev 62:1234–1270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claus, D., Schöcklmann, H.O. & Dietrich, H.J. Long latency muscle responses in cerebellar diseases. Eur Arch Psychiatr Neurol Sci 235, 355–360 (1986). https://doi.org/10.1007/BF00381004

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00381004

Key words

Navigation